Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T07:00:47.633Z Has data issue: false hasContentIssue false

Growth of the Single-Crystalline ZnO Films on Si (111) Substrates by Plasma-Assisted Molecular-Beam Epitaxy

Published online by Cambridge University Press:  21 March 2011

Kazuto Koike
Affiliation:
Bio Venture Center Osaka Institute of Technology, Asahi-ku Ohmiya, Osaka 535–8585, Japan
Takanori Tanite
Affiliation:
New Materials Research Center, Osaka Institute of Technology, Asahi-ku Ohmiya, Osaka 535–8585, Japan
Shigehiko Sasa
Affiliation:
Bio Venture Center Osaka Institute of Technology, Asahi-ku Ohmiya, Osaka 535–8585, Japan New Materials Research Center, Osaka Institute of Technology, Asahi-ku Ohmiya, Osaka 535–8585, Japan
Masataka Inoue
Affiliation:
Bio Venture Center Osaka Institute of Technology, Asahi-ku Ohmiya, Osaka 535–8585, Japan New Materials Research Center, Osaka Institute of Technology, Asahi-ku Ohmiya, Osaka 535–8585, Japan
Mitsuaki Yano
Affiliation:
Bio Venture Center Osaka Institute of Technology, Asahi-ku Ohmiya, Osaka 535–8585, Japan New Materials Research Center, Osaka Institute of Technology, Asahi-ku Ohmiya, Osaka 535–8585, Japan
Get access

Abstract

This report describes the growth of single-crystalline ZnO films on Si (111) substrates by plasma-assisted molecular-beam epitaxy. X-ray diffraction measurement shows that c-axis oriented ZnO films are easily grown on Si (111) substrates. However, in-plane random rotational domains are included in the ZnO films due to the inevitable oxidation of substrate surface at the initial stage of ZnO growth. By employing a thin CaF2 buffer layer between the ZnO films and Si substrates, we have succeeded in suppressing the generation of rotational domains and in obtaining an intense ultraviolet photoluminescence even at room temperature. These results indicate that the use of CaF2 buffer layer is promising for the growth of device-quality ZnO films on Si (111) substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Thomas, D. G., J. Phys. Chem. Solids 15, 86 (1960).Google Scholar
2. Iwata, K., Fons, P., Niki, S., Yamada, A., Matsubara, K., Nakahara, K., Tanabe, T., and Takasu, H., J. Crystal Growth 214/215, 50 (2000).Google Scholar
3. Ko, H. J., Chen, Y. F., Ko, J. M., Hanada, T., Zhu, Z., Fukuda, T., and Yao, T., J. Crystal Growth 207, 87 (1999).Google Scholar
4. Tsutsui, M., Watanabe, M., and Asada, M., Jpn. J. Appl. Phys. 38, L920 (1999).Google Scholar
5. Kawasaki, K. and Tsutsui, K., Jpn. J. Appl. Phys. 38, 1521 (1999).Google Scholar
6. Vinh, L. T., Eddrief, M., Sébenne, C. A., Dumas, P., Ibrahimi, A. T., Gunther, R., Chabal, Y. J., and Derrien, J., Appl. Phys. Lett. 64, 3308 (1994).Google Scholar
7. Lee, H. C., Asano, T., Ishiwara, H., and Furukawa, S., Jpn. J. Appl. Phys. 27, 1616 (1988).Google Scholar
8. Bagnall, D. M., Chen, Y. F., Zhu, Z., Yao, T., Shen, M. Y., and Goto, T., Nonlinear Optics 18, 243 (1997).Google Scholar
9. Ko, H. J., Chen, Y. F., Zhu, Z., Yao, T., Kobayashi, I., and Uchiki, H., Appl. Phys. Lett. 76, 1905 (2000).Google Scholar
10. Wu, X. L., Siu, G. G., Fu, C. L., and Ong, H. C., Appl. Phys. Lett. 78, 2285 (2001).Google Scholar