Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-01T07:54:30.917Z Has data issue: false hasContentIssue false

Growth, Structural Characterization, and Optical Band Gap Anomaly in Cu-III3-VI5 and Cu-III5-VI8 Ternary Compounds

Published online by Cambridge University Press:  21 March 2011

S. M. Wasim
Affiliation:
Centro de Estudios de Semiconductores, Universidad de Los Andes, Facultad de Ciencias, Mérida, Venezuela
C. Rincón
Affiliation:
Centro de Estudios de Semiconductores, Universidad de Los Andes, Facultad de Ciencias, Mérida, Venezuela
G. Marín
Affiliation:
Centro de Estudios de Semiconductores, Universidad de Los Andes, Facultad de Ciencias, Mérida, Venezuela
R. Márquez
Affiliation:
Centro de Estudios de Semiconductores, Universidad de Los Andes, Facultad de Ciencias, Mérida, Venezuela
G. Sánchez Pérez
Affiliation:
Centro de Estudios de Semiconductores, Universidad de Los Andes, Facultad de Ciencias, Mérida, Venezuela
R. Guevara
Affiliation:
Centro Nacional de Difracción de Rayos X, Facultad de Ciencias, Mérida, Venezuela
J. M. Delgado
Affiliation:
Centro Nacional de Difracción de Rayos X, Facultad de Ciencias, Mérida, Venezuela
L. Nieves
Affiliation:
Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
Get access

Abstract

A comparative study of the chemical composition, crystal structure, carrier concentration, mobility, and the energy gap at room temperature of the selenides and tellurides of normal Cu- III-VI2 and ordered defect Cu-III3-VI5and Cu-III5-VI8 compounds, grown by Bridgman techniques, is made. It is established that these compounds have a chalcopyrite-related structure with the exception of CuIn5Se8 and CuGa5Te8 that have hexagonal and cubic structure, respectively. Smaller volume of the unit cell and lower concentration of the charge carrier of the 1:3:5 and 1:5:8 phases, as compared to the 1:1:2, are attributed to the presence of the ordered vacancies. A new mechanism of the scattering of the charge carriers with the donor-acceptor defect pair (DADP) is suggested to explain the low value of mobility in these compounds. The anomaly observed in the band gap is explained in terms of the relative shift of the conduction band minimum and valence band maximum due to the donor-acceptor defect pairs and cation vacancies, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Contreras, M. A., Egaas, B., Ramanathan, K., Hiltner, J., Swartzlander, A., Hasoon, F., Noufi, R., Pro. Photovolt. Res. Appl. 7, 311 (1999).Google Scholar
2. Schmid, D., Ruckh, M., Grunwald, F., Schock, H. W., J. Appl. Phys. 73, 2902, (1993).Google Scholar
3. Wei, S. H., Zhang, S. B., and Zunger, A., Appl. Phys. Lett. 72, 3199 (1998).Google Scholar
4. Zhang, S. B., Wei, S. H., Zunger, A., and Katayama-Yoshida, H., Phys. Rev. B 57, 9642 (1998).Google Scholar
5. Marín, G., Tauleigne, S., Wasim, S. M., Rincón, C., Guevara, R., Delgado, J. M., Mora, A. E., and Pérez, G. Sánchez, Materials Res. Bull. 33, 1057 (1998).Google Scholar
6. Marin, G., Wasim, S. M., Rincón, C., Pérez, G. Sánchez, Power, Ch., and Mora, A. E., J. Appl. Phys. 83, 3364 (1998). 7.See details in reference 9.Google Scholar
8. Jaffe, E. and Zunger, A., Phys. Rev. B 29, 1882 (1984).Google Scholar