Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-01T02:33:16.740Z Has data issue: false hasContentIssue false

Heat transfer between a hot AFM tip and a cold sample: impact of the air pressure

Published online by Cambridge University Press:  29 May 2013

Pierre-Olivier Chapuis
Affiliation:
Laboratoire EM2C, Ecole Centrale Paris-CNRS, Grande voie des vignes, 92295 Chatenay-Malabry, France Centre de Thermique de Lyon (CETHIL), CNRS-INSA de Lyon-UCBL, 9 rue de la Physique, Campus La Doua-LyonTech, 69621 Villeurbanne (Lyon), France
Emmanuel Rousseau
Affiliation:
Laboratoire EM2C, Ecole Centrale Paris-CNRS, Grande voie des vignes, 92295 Chatenay-Malabry, France Groupe d’Etude des Semiconducteurs - CC074, Université de Montpellier II, Place Eugène Bataillon, 34095 Montpellier, France
Ali Assy
Affiliation:
Centre de Thermique de Lyon (CETHIL), CNRS-INSA de Lyon-UCBL, 9 rue de la Physique, Campus La Doua-LyonTech, 69621 Villeurbanne (Lyon), France
Séverine Gomès
Affiliation:
Centre de Thermique de Lyon (CETHIL), CNRS-INSA de Lyon-UCBL, 9 rue de la Physique, Campus La Doua-LyonTech, 69621 Villeurbanne (Lyon), France
Stéphane Lefèvre
Affiliation:
Centre de Thermique de Lyon (CETHIL), CNRS-INSA de Lyon-UCBL, 9 rue de la Physique, Campus La Doua-LyonTech, 69621 Villeurbanne (Lyon), France
Sebastian Volz
Affiliation:
Laboratoire EM2C, Ecole Centrale Paris-CNRS, Grande voie des vignes, 92295 Chatenay-Malabry, France
Get access

Abstract

We observe the heat flux exchanged by the hot tip of a scanning thermal microscope, which is an instrument based on the atomic force microscope. We first vary the pressure in order to analyze the impact on the hot tip temperature. Then the distance between the tip and a cold sample is varied down to few nanometers, in order to reach the ballistic regime. We observe the cooling of the tip due to the tip-sample heat flux and compare it to the current models in the literature.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Williams, C.C. and Wickramasinghe, H.K., Appl. Phys. Lett. 49, (1986), 1587 CrossRefGoogle Scholar
Fiege, G. B. M., Altes, A., Heiderhoff, R. and Balk, L. J., J. Phys. D: Appl. Phys. 32, L13 (1999).CrossRefGoogle Scholar
Dinwiddie, R.B., Pylkki, R.J. and West, P.E., Thermal conductivity contrast imaging with a scanning thermal microscope, Thermal conductivity 22, Wong, T.W. ed, Tecnomics, Lancaster PA, 668677, 1994 Google Scholar
Hammiche, A., Pollock, H.M., Song, M., Hourston, D.J., Rev. Sci. Instrum. 67, 4268 (1996)CrossRefGoogle Scholar
Vettiger, P., Cross, G., Despont, M., Drechsler, U., Dürig, U., Gotsmann, B., Häberle, W., Lantz, M.A., Rothuizen, H.E., Stutz, R. and Binnig, G. K., IEEE Trans. on Nanotech. 1, 39 (2002)CrossRefGoogle Scholar
King, W.P. and Goodson, K.E., ASME J. Heat Transf. 124, 597, (2002)CrossRefGoogle Scholar
Challener, W. A. et al. . Nature Photonics 3,220 (2009).CrossRefGoogle Scholar
Chimmalgi, A., Hwang, D.J., and Grigoropoulos, C.P., Nano Lett. 5, 1924 (2005)CrossRefGoogle Scholar
Milner, A.A., Zhang, K., and Prior, Y., Nano Lett. (2008)Google Scholar
Fenwick, O., Bozec, L., Credgington, D., Hammiche, A. ., Lazzerini, G. M., Silberberg, Y. R. and Cacialli, F., Nature Nanotechnology 4, 668 (2009)CrossRefGoogle Scholar
Szoszkiewicz, R., Okada, T., Jones, S. C., Li, T.-D., King, W. P., Marder, S. R., and Riedo, E., Nano Lett. 7, 1064 (2007)CrossRefGoogle Scholar
Chapuis, P.O., Greffet, J-J., Joulain, K. and Volz, S.. Nanotechnology 17, 2978 (2006).CrossRefGoogle Scholar
Microscale and Nanoscale Heat Transfer, Topics in Applied Physics 16, Vol. 107, S. Volz d., 2007 Google Scholar
Lefèvre, S., Volz, S. and Chapuis, P.-O.. Int. J. Heat Mass Transf. 49, 251 (2006).CrossRefGoogle Scholar
Shi, L. and Majumdar, A., ASME J. Heat Transf. 124, 329 (2002)CrossRefGoogle Scholar
Hinz, M., Marti, O., Botsmann, B., Lantz, M.A. and Dürig, U.. Appl. Phy. Lett. 92, 043122 (2008).CrossRefGoogle Scholar
Lefèvre, S., Volz, S., Fuentes, C., Saulnier, J.B. and Trannoy, N., Rev. Scient. Instr. 74, 2418 (2003)CrossRefGoogle Scholar
Lefèvre, S. and Volz, S., Rev. Scient. Instr. 76, 033701 (2005)CrossRefGoogle Scholar
Chapuis, P.-O., PhD Thesis, Ecole Centrale Paris (2007)Google Scholar
Lees, L. and Liu, C.Y., Phys. of Fluids 5, 1137 (1962)CrossRefGoogle Scholar