Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T14:20:51.081Z Has data issue: false hasContentIssue false

Heteroepitaxial Growth of PZT Film on (100)Ir/(100)YSZ/(100)Si Substrate Structure Prepared by Reactive Sputtering

Published online by Cambridge University Press:  10 February 2011

Susumu Horita
Affiliation:
Japan Advanced Inst of Science and Technology, School of Material Science, Ishikawa, Japan
Sadayoshi Horii
Affiliation:
Delegated from Kokusai Electric Co., Ltd, Toyama, Japan
Get access

Abstract

A heteroepitaxial (001)Pb(ZrxTi1−x)O3(PZT) film was grown on the (100)Ir/(100)YSZ/Si structure with a cube-on-cube relationship by using reactive sputtering. The X-ray diffraction patterns of this sample showed that the double domain crystal layer of the (110) IrO2 was formed between the Ir and PZT films. According to reflection high energy electron diffraction observation and X-ray photoelectron spectroscopy measurements, it was found that the initial epitaxial growth of the PZT film occurred on the Ir film. The polarization-electric field hysteresis loop of the 285-nm-thick epitaxial PZT film with the top electrode of IrO2 showed a saturated square shape at the ac amplitude of 3V, and the remanent polarization 2Pr and the coercive field 2Ec were 80 µC/cm 2 and 100 kV/cm, respectively. The 2Pr's were not reduced up to the switching cycles of 5 × 1010 with ± 5V bipolar pulse.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Moll, J. L. and Tarui, Y., IEEE Trans. Electron Device 10, 338 (1963).Google Scholar
2. Hirai, T., Teramoto, K., Nagashima, K., Koike, H. and Tarui, Y., Jpn. J. Appl. Phys. 34, 4163 (1995).Google Scholar
3. Keijser, M. de, Cillessen, J. F. M., Janssen, R. B. F., Veirman, A. E. M. De and Leeuw, D. M. de, J. Appl. Phys. 79, 393 (1996).Google Scholar
4. Foster, C. M., Bai, G.-R., Csencsites, R., Vetrone, J., Jammy, R., Wills, L. A., Carr, E. and Amano, J., J. Appl. Phys. 81, 2349 (1997).Google Scholar
5. Leganeux, P., Garry, G., Dieumegard, D., Schwebel, C., Pellet, C., Gautherin, G. and Siejka, J., Appl. Phys. Lett. 53, 1506 (1988),Google Scholar
6. Hirai, T., Teramoto, K., Nagashima, K., Koike, H., Matsumoto, S., Taniimoto, S. and Tarui, Y., Jpn. J. Appl. Phys. 35, 4016 (1996).Google Scholar
7. Horita, S., Kawata, T. and Abe, Y., Jpn. J. Appl. Phys. 5 (1996) L157.Google Scholar
8. Horita, S., Naruse, T., Watanabe, M., Masuda, A., Kawata, T. and Abe, Y., Appl. Surf. Sci. 117/118, 429 (1997).Google Scholar
9. Nakamura, T., Nakao, Y., Kamisawa, A. and Takasu, H., Jpn. J. Appl. Phys. 33, 5207 (1994).Google Scholar
10. Nakamura, T., Nakao, Y., Kamisawa, A. and Takasu, H., Jpn. J. Appl. Phys. 34, 5184 (1995).Google Scholar
11. Nakamura, T., Nakao, Y., Kamisawa, A. and Takasu, H., Appl. Phys. Lett. 65, 1522 (1994).Google Scholar
12. Horita, S., Abe, Y. and Kawada, T., Thin Solid Films 281/282, 28 (1996).Google Scholar
13. Horita, S., Nakao, Y. and Fujiyama, T., Jpn. J. Appl. Phys. 34, 1942 (1995).Google Scholar
14. Horita, S., Tajima, T., Murakawa, M., Fujiyama, T. and Hata, T., Thin Solid Films 229, 17 (1993).Google Scholar
15. Horita, S., Horii, S. and Umemoto, S.. Jpn. J. Appl. Phys. 37, 5141 (1998).Google Scholar
16. Wagner, C. D., Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Co.) (1979), p. 150.Google Scholar