Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T19:43:54.126Z Has data issue: false hasContentIssue false

High Efficiency Thin Film Solar Cells with Intrinsic Microcrystalline Silicon Prepared by Hot Wire CVD

Published online by Cambridge University Press:  01 February 2011

S. Klein
Affiliation:
Institut für Photovoltaik, Forschungszentrum Jülich, D-52425 Jülich, Germany
F. Finger
Affiliation:
Institut für Photovoltaik, Forschungszentrum Jülich, D-52425 Jülich, Germany
R. Carius
Affiliation:
Institut für Photovoltaik, Forschungszentrum Jülich, D-52425 Jülich, Germany
B. Rech
Affiliation:
Institut für Photovoltaik, Forschungszentrum Jülich, D-52425 Jülich, Germany
L. Houben
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich, D-52425 Jülich, Germany
M. Luysberg
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich, D-52425 Jülich, Germany
M. Stutzmann
Affiliation:
Walter Schottky Institut, TU München, D-85748 Garching, Germany
Get access

Abstract

Thin film microcrystalline silicon solar cells were prepared with intrinsic absorber layers by Hot Wire CVD at various silane concentrations and substrate temperatures. Independently from the substrate temperature, a maximum efficiency is observed close to the transition to amorphous growth, i.e. the best cells already show considerable amorphous volume fractions. A detailed analysis of the thickness dependence of the solar cell parameters in the dark and under illumination indicate a high electronic quality of the i-layer material. Solar cells with very high open circuit voltages Voc up to 600mV in combination with fill factors above 70% and high short circuit current densities jsc of 22mA/cm2 were obtained, yielding efficiencies above 9%. The highest efficiency of 9.4% was achieved in solar cells of 1.4μm and 1.8μm thickness. These cells with high Voc have considerable amorphous volume fractions in the i-layer, leading to a reduced absorption in the infrared wavelength region.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yamamoto, K., Yoshimi, M., Tawada, Y., Okamoto, Y. and Nakajima, A.: J. Non-Cryst. Solids 266-269, 1082(2000).Google Scholar
2. Repmann, T., Appenzeller, W., Roschek, T., Rech, B. and Wagner, H.: Proc of 28th Photovoltaic Spec. Conf., Anchorage, USA, 912 (IEEE, Piscataway, NJ, 2000).Google Scholar
3. Vetterl, O., Finger, F., Carius, R., Hapke, P., Houben, L., Kluth, O., Lambertz, A., Mück, A., Rech, B. and Wagner, H.: Solar Energy Materials & Solar Cells 62, 97(2000).Google Scholar
4. Matsumura, H., Jpn. J. Appl. Phys. 37, 3175(1998).Google Scholar
5. Rath, J.K., Tichelaar, F.D., Meiling, H. and Schropp, R.E.I.: Mater. Res. Soc. Symp. Proc. 507, 879(1998).Google Scholar
6. Ledermann, A., Weber, U., Mukherjee, C. and Schröder, B.: Thin Solid Films 395, 61(2001).Google Scholar
7. Klein, S., Wolff, J., Finger, F., Carius, R., Wagner, H. and Stutzmann, M.: Jpn. J. Appl. Phys, 41, 2, L10 (2002).Google Scholar
8. Schropp, R.E.I.: Thin Solid Films 395, 17(2001).Google Scholar
9. Klein, S., Finger, F., Carius, R., Wagner, H. and Stutzmann, M.: Thin Solid Films 395, 305(2001).Google Scholar
10. Finger, F., Klein, S., Dylla, T., Baia, A. L. Neto, O. Vetterl and Carius, R., this conference, A16.3. Google Scholar
11. Kluth, O., Rech, B., Houben, L., Wieder, S., G. Schöpe, Beneking, C., Wagner, H., Löffl, A., Schock, H.W.: Thin Solid Films, 351, 247(1999).Google Scholar
12. Vetterl, O., Dasgupta, A., Lambertz, A., Stiebig, H., Finger, F. and Wagner, H.: Mater. Res. Soc. Symp. Proc. 664, A25.8 (2001).Google Scholar
13. Sze, S.M., Physics of Semiconductor Devices, 2nd Edition, wiley, new York, 1981.Google Scholar
14. Luysberg, M., Scholten, C., Houben, L., Carius, R., Finger, F. and Vetterl, O.: Mater. Res. Soc. Proc. 664, A15.2 (1998).Google Scholar