Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-13T01:24:15.175Z Has data issue: false hasContentIssue false

High Magnetic Field Studies of AlGaN/GaN Heterostructures Grown on Bulk GaN, SiC, and Sapphire Substrates

Published online by Cambridge University Press:  17 March 2011

W. Knap
Affiliation:
Rensselaer Polytechnic Institute, Troy, NY 12180, USA GES- CNRS-Universite Montpellier2 UMR5650 Montpellier, France
E. Borovitskaya
Affiliation:
Rensselaer Polytechnic Institute, Troy, NY 12180, USA
M. S. Shur
Affiliation:
Rensselaer Polytechnic Institute, Troy, NY 12180, USA
R. Gaska
Affiliation:
Rensselaer Polytechnic Institute, Troy, NY 12180, USA Sensor Electronic Technology, Latham, NY 12110, USA
G. Karczewski
Affiliation:
NHMFL/ Florida State University, Tallahassee, USA
B. Brandt
Affiliation:
NHMFL/ Florida State University, Tallahassee, USA
D. Maude
Affiliation:
Grenoble High Magnetic Field Laboratory, Grenoble, France
E. Frayssinet
Affiliation:
CNRS – CRHEA, Valbonne, France
P. Lorenzini
Affiliation:
CNRS – CRHEA, Valbonne, France
N. Grandjean
Affiliation:
CNRS – CRHEA, Valbonne, France
J. Massies
Affiliation:
CNRS – CRHEA, Valbonne, France
J. W. Yang
Affiliation:
University of South Carolina, Columbia, USA
X. Hu
Affiliation:
University of South Carolina, Columbia, USA
G. Simin
Affiliation:
University of South Carolina, Columbia, USA
M. Asif Khan
Affiliation:
University of South Carolina, Columbia, USA
C. Skierbiszewski
Affiliation:
High Pressure Research Center, UNIPRESS, Warsaw, Poland
P. Prystawko
Affiliation:
High Pressure Research Center, UNIPRESS, Warsaw, Poland
I. Grzegory
Affiliation:
High Pressure Research Center, UNIPRESS, Warsaw, Poland
S. Porowski
Affiliation:
High Pressure Research Center, UNIPRESS, Warsaw, Poland
Get access

Abstract

We present the results of the high magnetic field studies of properties of two-dimensional electron gas (2DEG) in AlGaN/GaN heterostructures grown over high-pressure bulk GaN, sapphire, and insulating SiC substrates. The experimental results include the low field Hall measurements, cyclotron resonance measurements, and cryogenic temperature Quantum Hall Effect studies as well as room-temperature characteristics of High Electron Mobility Transistors fabricated on all these substrates. The room temperature high field measurements allow us to clearly separate the contributions of a parasitic parallel conduction from 2DEG conduction in all investigated heterostructures.

The magnetotransport measurements are performed in the magnetic fields up to 30 Tesla for temperatures between 50mK-300K. This high magnetic field in combination with very high mobilities (over 60.000 cm2/Vs) in the sample on the bulk GaN substrates allow us to observe features related both to cyclotron resonance and spin splitting. The temperature dependence of this splitting determines the spin and cyclotron resonance energy gaps and, in combination with cyclotron resonance and tilted field experiments, allows us to determine the complete energy structure of 2DEG conduction band. We also present the first experimental results showing so called “the exchange enhancement” of the energy gaps between spin Landau levels.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Pearton, S., Editor, Gordon and Breach Science Publishers, Series Optoelectronic Properties of Semiconductors and Superlattices, Vol. 7 GaN and Related Materials II, pp. 4786 (1999).Google Scholar
2) Khan, M. Asif, Kuznia, J. N., Hove, J. M. Van, Pan, N. and Carter, J., Appl. Phys. Lett. 60, 3027 (1992); M. Asif Khan, J. N. Kuznia, J. M. Van Hove, D. T. Olson, S. Krishnankutty and R. M. Kolbas, ibid. 58,526 (1991).Google Scholar
3) Knap, W., Contreras, S., Alause, H., et al Appl. Phys. Lett. 70, 2123 (1997); W. Knap, H. Alause, J. M. Bluet, J. Camassel, J. Young, M. Asif Khan, Q. Chen, S. Huant, and M. S. Shur, Solid State Commun. 99, 195 (1996)Google Scholar
4) Dziuba, Z., Antoszewski, J., Dell, J. M., Faraone, L., Kozodoy, P., Keller, S., DenBaars, S. P., Mishra, U. K., J. Appl. Phys. 82, 2996 (1997).Google Scholar
5) Burgt, M. van der, Karavolas, V. C., Peeters, F. M., Singleton, J., Nicholas, R J., Herlach, F., Harris, J. J., Hove, M. Van, and Borghs, G., Phys. Rev. B 52, 12 218 (1995).Google Scholar
6) Wasik, D., Dmowski, L., Mikucki, J., Lusakowski, J., Hsu, L., Walukiewicz, W., Bi, W. G., Tu, C. W., Proc. 19th Int. Conf. of Defects in Semiconductors (ICDS19), Aveiro, Portugal 1997.Google Scholar
7) Kim, J. S., Seiler, D. G. and Tseng, W. F., J. Appl. Phys. 73, 8324 (1993)Google Scholar
8) Dziuba, E.Z., Phys. Status Solidi B 62, 307 (1974)Google Scholar
9) Beck, W. A. and Anderson, J. R., J. Appl. Phys. 62, 541 (1987)Google Scholar
10) Borovitskaya, E., Knap, W., Shur, M. S., Gaska, R., Frayssinet, E., Lorenzini, P., Grandjen, N., Baumont, B., Massies, J., Skierbiszewski, C., Prystawko, P., Lezszynski, M., Grzegory, I., Porowski, S., these MRS ProceedingsGoogle Scholar
11) Contreras, S., Knap, W., Frayssinet, E., Sadowski, M.L, Goiran, M., and Shur, M. S., J. Appl. Phys, Vol. 89, No. 1 (2001)Google Scholar
12) Khan, M. Asif and Yang, J. W., Knap, W., Frayssinet, E., Hu, X. and Simin, G., Prystawko, P., Leszczynski, M., Grzegory, I., Porowski, S., Gaska, R., Shur, M. S., Beaumont, B., Teisseire, M., and Neu, G., Appl. Phys. Lett. 76, No. 25, pp. 38073809, (2000)Google Scholar
13) Frayssinet, E., Knap, W., Lorenzini, P., Grandjean, N. and Massies, J., Skierbiszewski, C., Suski, T., Grzegory, I., Porowski, S., Simin, G., Hu, X., Khap, M. Asif, Shur, M., Gaska, R., and Maude, D., Applied Physics Letters, Vol. 77, No. 16, pp. 25512553 (2000)Google Scholar
14) Nicholas, R. J., Haug, R. J., Klitzing, K. von and Weinmann, G., Phys. Rev. B. 37,1294 (1988)Google Scholar
15) Knap, W., Frayssinet, E., Sadowski, M. L., Skierbiszewski, C., Maude, D., Falko, V., Khan, M. A., and Shur, M. S., Appl. Phys. Lett. Vol. 75, No. 20, pp. 31563158 (1999)Google Scholar
16) Carlos, W. E., Freitas, J. A. Jr, Khan, M. Asif, Olson, D.T. and Kuznia, J.N., Phys. Rev. B. 48, 17878 (1993); E. R. Glaser et al, Phys. Rev. B. 51, 13326 (1995)Google Scholar
17) Bychkov, Yu. and Rashba, E. I., Sov. Phys. JETP 39, 78 (1984)Google Scholar
18) Ando, T., Fowler, A.B., Stern, F., Rev. Mod. Phys. 54, 437 (1982)Google Scholar