No CrossRef data available.
Article contents
High Temperature Stable Contacts for GaN HEMTs and LEDs
Published online by Cambridge University Press: 01 February 2011
Abstract
There is continued interest in developing more stable contacts to a variety of GaN-based devices. In this paper we give two examples of devices that show improved thermal stability when boride, nitride or Ir diffusion barriers are employed in Ohmic contact stacks. AlGaN/GaN High Electron Mobility Transistors (HEMTs) were fabricated with Ti/Al/X /Ti/Au source/ drain Ohmic (where X is TiB2, ZrN, TiN, TaN or Ir) contacts and subjected to long-term annealing at 350°C. For GaN layers with an electron concentration of ∼3×1017 cm-3, the minimum specific contact resistance achieved is 6×10-5 Ω cm2 for Ti/Al/TiN/Ti/Au after annealing at 800°C. The specific contact resistance was found to strongly depend on the doping level, suggesting that tunneling is the dominant mechanism of current flow. By comparison with companion devices with conventional Ti/Al/Ni/Au Ohmic contacts, the HEMTs with boride-based Ohmic metal showed superior stability of both source-drain current and transconductance after 25 days aging at 350°C. The gate current for standard HEMTs increases during aging and the standard Ohmic contacts eventually fail by shorting to the gate contact. Similarly, InGaN/GaN multiple quantum well light-emitting diodes (MQW-LEDs) were fabricated with either Ni/Au/TiB2/Ti/Au or Ni/Au/Ir/Au p-Ohmic contacts. Both of these contacts showed superior long-term thermal stability compared to LEDs with conventional Ni/Au contacts.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2009