Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T07:00:49.234Z Has data issue: false hasContentIssue false

High-Resolution X-Ray Diffraction Measurements of SiGe/Si Structures

Published online by Cambridge University Press:  15 February 2011

J. L. Jordan-Sweet
Affiliation:
IBM Research Division, T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, USA
P. M. Mooney
Affiliation:
IBM Research Division, T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, USA
G. B. Stephenson
Affiliation:
IBM Research Division, T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, USA
Get access

Abstract

High-resolution x-ray diffraction is an excellent probe of strain relaxation in complex SiGe structures. The high flux provided by synchrotron sources enables us to make extensive reciprocal space map measurements and evaluate many samples. The diffraction peak positions of each layer in a step-graded structure, measured for two different reflections, yield quantitative values for the relaxation and alloy composition in the layer. Grazing-incidence diffraction allows us to determine the in-plane structure of very thin layers, which have thickness-broadened peaks at conventional diffraction geometries. We demonstrate the power of these techniques with two examples.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ismail, K., Rishton, S., Chu, J.O., Chan, K., Nelson, S.F., and Meyerson, B.S., Electr. Dev. Left. 14, 348 (1993).Google Scholar
2. Ismail, K., Chu, J.O., and Meyerson, B.S., Appl. Phys. Lett. 64, 3124 (1994).Google Scholar
3. Meyerson, B.S., Appl. Phys. Lett. 48, 797 (1986).Google Scholar
4. Mooney, P.M., LeGoues, F.K., Chu, J.O., and Nelson, S.F., Appl. Phys. Lett. 62, 3462 (1993).Google Scholar
5. Koppensteiner, E., Hamberger, P., Bauer, G., Holy, V., and Kasper, E., Appl. Phys. Lett. 64, 172 (1994)Google Scholar
6. Tersoff, J. and LeGoues, F.K., Phys. Rev. Lett. 72, 3570 (1994).Google Scholar
7. LeGoues, F.K., Meyerson, B.S., and Morar, J.F., Phys. Rev. Lett. 66, 2903 (1991).Google Scholar
8. LeGoues, F.K., Meyerson, B.S., Morar, J.F. and Kirchner, P.D., J. Appl. Phys. 71, 4230 (1992).Google Scholar
9. LeGoues, F.K., Phys. Rev. Lett. 72, 876 (1994).Google Scholar
10. Fitzgerald, E.A., Xie, Y.-H., Green, M.L., Brasen, D., Kortan, A.R., Michel, J., Mii, Y.-J., and Weir, B.E., Appl. Phys. Left. 59, 811 (1991).Google Scholar
11. Fewster, P.F., Semicond. Sci. Technol. 8, 1915 (1993).Google Scholar
12. Mooney, P.M., Jordan-Sweet, J.L., Stephenson, G.B., LeGoues, F.K., and Chu, J.O., Advances in X-ra) Analysis 38, (in press).Google Scholar
13. Modelling was done using RADS, Bede Scientific Instruments Limited, North Easter Analytical, Millis MA 02054.Google Scholar