Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-02T18:56:38.140Z Has data issue: false hasContentIssue false

Homoepitaxial and Heteroepitaxial Growth of Sr0.61Ba0.39Nb2O6 Thin Films by Pulsed Laser Deposition

Published online by Cambridge University Press:  15 February 2011

J. S. Yeo
Affiliation:
Center for Nonlinear Optical Materials, Stanford University, Stanford, CA 94305
K. E. Youden
Affiliation:
New Focus, Inc., 2630 Walsh Avenue, Santa Clara, CA 95051-0905
T. F. Huang
Affiliation:
Center for Nonlinear Optical Materials, Stanford University, Stanford, CA 94305
L. Hesselink
Affiliation:
Center for Nonlinear Optical Materials, Stanford University, Stanford, CA 94305
J. S. Harris Jr.
Affiliation:
Center for Nonlinear Optical Materials, Stanford University, Stanford, CA 94305
Get access

Abstract

Epitaxial SBN:61 films have been grown on SBN:75 and MgO substrates by pulsed laser deposition. The optical loss due to absorption is greatly reduced by increasing the oxygen pressure to 1 mbar during the cooling process. In homoepitaxy, X-ray phi scans on the (221) plane of the SBN:61 films indicate that the in-plane grains are rotated 0° or ±28° with respect to single crystalline SBN:75 substrates. Cross-section and plane view high resolution TEM reveals this crystalline relations and microstructure of SBN thin films. Pr doped SBN:61 thin films show sharp transition band at 495 nm and 607 nm in room temperature photoluminescence measurement.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hubler, G. K., Mater. Res. Soc. Bull. XVII, 26 (1992).Google Scholar
2. Fork, D. K., Armani-Leplingard, F., and Kingston, J. J.in Ferroelectric Thin Films IV, edited by Tuttle, B. A., Desu, S. B., Ramesh, R., and Shiosaki, T. (Mater. Res. Soc. Proc. 361, Boston, MA, 1994)Google Scholar
Youden, K. E., Schwyn Thöny, S., Hesselink, L., and Harris, J. S. Jr., in Ferroelectric Thin Films IV, edited by Tuttle, B. A., Desu, S. B., Ramesh, R., and Shiosaki, T. (Mater. Res. Soc. Proc. 361, Boston, MA, 1994) pp. 173178.Google Scholar
3. Aronson, L. B., and Hesselink, L., Opt. Lett., 15, 30 (1990).Google Scholar
4. Smith, S. L., and Hesselink, L., J. Opt. Soc. Am., A (1992).Google Scholar
5. Vré, R. De, and Hesselink, L., J. Opt. Soc. Am., B 11, 1800 (1994).Google Scholar
6. Thbny, S. Schwyn, Youden, K. E., Harris, J. S. Jr. and Hesselink, L., Appl. Phys. Lett., 65, 2018 (1994).Google Scholar
7. Agullo-Lopez, F., Catlow, C. R. A., and Townsend, P. D., Point Defects in Materials, (Academic Press, San Diego, 1988), p. 167.Google Scholar
8. Ballman, A. A., and Brown, H., J. Cryst. Growth 1, 311 (1967).Google Scholar
9. Moriya, K., Phil. Mag. B, 64, 425 (1991).Google Scholar
10. Huang, T. F., Youden, K. E., Thöny, S. Schwyn, Hesselink, L., and Harris, J. S. Jr., presented at the 1995 MRS Spring Meeting, San Francisco, CA, (1995).Google Scholar
11. Megumi, K., Nagatsuma, N., Kashiwada, Y., Furuhata, Y., J. Mat. Sc., 11, 1583, (1976).Google Scholar
12. Zhang, G., Ying, X., Yao, L., Chen, T., and Chen, H., J. Lumin. 59, 315 (1994).Google Scholar