Published online by Cambridge University Press: 15 February 2011
Interest in the mechanisms by which hot spots either grow to sustained reaction or are quenched results from the observation that the energy required to ignite a propellant or explosive can be significantly less than that needed to bulk heat a test specimen uniformly to its ignition temperature. This result is independent of the original form of non-thermal energy and has been used to interpret data for shock, impact, friction and electrostatic discharge (ESD) stimuli. We present new flowcharts which include 1) events resulting in hot spot formation and 2) subsequent pathways which lead to sustained reaction or quenching. The mechanism appears capable of categorizing and demonstrating the similarities and differences between hot spot growth or quenching, for impact and ESD stimuli. Sample confinement and temperature and stimulus duration are the independent variables whose roles are particularly clarified in the mechanism.