Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-01T09:46:49.278Z Has data issue: false hasContentIssue false

Hot-Wire Chemical Vapor Deposition Epitaxy on Polycrystalline Silicon Seeds on Glass

Published online by Cambridge University Press:  01 February 2011

Charles W. Teplin
Affiliation:
Charles_Teplin@NREL.gov, NREL, NCPV, 1617 Cole Blvd, Golden, CO, 80401, United States, 303-384-6440, 303-384-7600
Howard M. Branz
Affiliation:
Howard_Branz@NREL.gov, NREL, NCPV, 1617 Cole Blvd, Golden, CO, 80401, United States
Kim M. Jones
Affiliation:
Kim_Jones@Nrel.gov, NREL, NCPV, 1617 Cole Blvd, Golden, CO, 80401, United States
Manuel J. Romero
Affiliation:
Manuel_Romero@NREL.gov, NREL, NCPV, 1617 Cole Blvd, Golden, CO, 80401, United States
Paul Stradins
Affiliation:
Pauls_Stradins@NREL.gov, NREL, NCPV, 1617 Cole Blvd, Golden, CO, 80401, United States
Stefan Gall
Affiliation:
gall@hmi.de, Hahn-Meitner-Institut Berlin, Kekuléstr. 5, D-12489, Berlin, N/A, Germany
Get access

Abstract

During the last few years, hot-wire chemical vapor deposition (HWCVD) has been explored as a low-temperature process for epitaxially thickening c-Si seeds layers on low cost substrates. Here, we demonstrate HWCVD epitaxy on thin polycrystalline silicon seed layers on borosilicate glass substrates. The crystal Si seeds are large-grained (~10 µm) polycrystalline silicon that were fabricated by Al-induced crystallization of a-Si. We report the growth of 0.5 µm of epitaxy at ~670°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bergmann, R.B. and Werner, J.H., Thin Solid Films 403, 162 (2002).Google Scholar
[2] Fuhs, W., Gall, S., Rau, B., Schmidt, M. and Schneider, J., Sol. Energy 77, 961 (2004).Google Scholar
[3] Teplin, C., Ginley, D. and Branz, H.M., J. Non-Cryst. Sol. 352, 984 (2006).Google Scholar
[4] Richardson, C., Mason, M. and Atwater, H., Thin Solid Films 501, 332 (2006).Google Scholar
[5] Basore, P., 21st European Photovoltaic Solar Energy Conference - Dresden, Germany Oral presentation (2006).Google Scholar
[6] Bergmann, R., Shi, F. and Krinke, J., Phys. Rev. Lett. 80, 1011 (1998).Google Scholar
[7] Gall, S., Schneider, J., Klein, J., Hubener, K., Muske, M., Rau, B., Conrad, E., Sieber, I., Petter, K., Lips, K., Stoger-Pollach, M., Schattschneider, P. and Fuhs, W., Thin Solid Films 511, 7 (2006).Google Scholar
[8] Aberle, A., J. Cryst. Growth 287, 386 (2006).Google Scholar
[9] Ekanayake, G., Quinn, T., Reehal, H.S., Rau, B. and Gall, S., J. Cryst. Growth 299, 309 (2007).Google Scholar
[10] Straub, A., Inns, D., Terry, M.L., Huang, Y., Widenborg, P. and Aberle, A., Thin Solid Films 511, 41 (2006).Google Scholar
[11] Gorka, B., Dogan, P., Sieber, I., Fenske, F. and Gall, S., Thin Solid Films in press (2007).Google Scholar
[12] Wang, Q., Teplin, C., Stradins, P., To, B., Jones, K.M. and Branz, H.M., J. Appl. Phys. 100, 093520 (2006).Google Scholar
[13] Stradal, J., Scholma, G., Li, H., Werf, C.H.M. Van Der, Rath, J.K., Widenborg, P., Campbell, P., Aberle, A. and Schropp, R., Thin Solid Films 501, 335 (2006).Google Scholar
[14] Lautenschlager, P., Garriga, M., Vina, L. and Cardona, M., Phys. Rev. B 36, 4821 (1987).Google Scholar
[15] Teplin, C., Iwaniczko, E., To, B., Moutinho, H., Stradins, P. and Branz, H.M., Phys. Rev. B 74, 235428 (2006).Google Scholar