Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T06:47:19.542Z Has data issue: false hasContentIssue false

Hydrogen Bonding and Microvoid Stability in a-Si:H

Published online by Cambridge University Press:  16 February 2011

M. J. Van Den Boogaard
Affiliation:
Department of Atomic and Interface Physics, Debye Institute, Universiteit Utrecht, P.O. Box 80.000, NL-3508 TA Utrecht, the, Netherlands
A. C. Van Der Steege
Affiliation:
Department of Atomic and Interface Physics, Debye Institute, Universiteit Utrecht, P.O. Box 80.000, NL-3508 TA Utrecht, the, Netherlands
W. G. J. H. M. Van Sark
Affiliation:
Department of Atomic and Interface Physics, Debye Institute, Universiteit Utrecht, P.O. Box 80.000, NL-3508 TA Utrecht, the, Netherlands
W. F. Van Der Weg
Affiliation:
Department of Atomic and Interface Physics, Debye Institute, Universiteit Utrecht, P.O. Box 80.000, NL-3508 TA Utrecht, the, Netherlands
Get access

Abstract

We have annealed PECVD a-Si:H films at 250, 300, and 350°C and measured the evolution of the infrared absorption spectrum. We observe that, during the initial stage of such a heat treatment, atomic hydrogen migrates from the isolated state to the clustered state. Thus diffusion of atomic hydrogen must occur around 300°C. Microvoids with internal surfaces covered with SiH bonds appear to be more stable than voids lined with SiH2 bonds and (SiH2)n polymers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mitra, S., Shinar, R., and Shinar, J., Phys. Rev. B 42, 6746 (1990).CrossRefGoogle Scholar
2. van den Boogaard, M. J., Arnold Bik, W. M., Habraken, F. H. P. M., and van der Weg, W. F., J. Non-Cryst. Solids 137–138, 29 (1991).CrossRefGoogle Scholar
3. Beyer, W., Physica B 170, 105 (1991).CrossRefGoogle Scholar
4. Williamson, D. L., Mahan, A. H., Nelson, B. P., and Crandall, R. S., Appl. Phys. Lett. 55, 783 (1989).CrossRefGoogle Scholar
5. Mahan, A. H., Chen, Y., Williamson, D. L., and Mooney, G. D., J. Non-Cryst. Solids 137–138, 65 (1991).CrossRefGoogle Scholar
6. Jia, H., Shinar, J., Chen, Y., and Williamson, D. L., Mater. Res. Soc. Symp. Proc. 258, 281 (1992).CrossRefGoogle Scholar
7. van den Boogaard, M. J., Jones, S. J., Chen, Y., Williamson, D. L., Hakvoort, R. A., van Veen, A., van der Steege, A. C., Arnold Bik, W. M., van Sark, W. G. J. H. M., and van der Weg, W. F., Mater. Res. Soc. Symp. Proc. 258, 407 (1992).CrossRefGoogle Scholar
8. Mashima, S., Hasezaki, K., Suzuki, A., McElheny, P. J., and Matsuda, A., Mater. Res. Soc. Symp. Proc. 219, 3 (1991).CrossRefGoogle Scholar
9. Matsuda, A., Mashima, S., Hasezaki, K., Suzuki, A., Yamasaki, S., and McElheny, P. J., Appl. Phys. Lett. 58, 2494 (1991).CrossRefGoogle Scholar
10. Brodsky, M. H., Cardona, M., and Cuomo, J. J., Phys. Rev. B 16, 3556 (1977).CrossRefGoogle Scholar
11. Langford, A. A., Fleet, M. L., and Mahan, A. H., Sol. Cells 27, 373 (1989).CrossRefGoogle Scholar
12. Shanks, H., Fang, C. J., Ley, L., Cardona, M., Demond, F. J., and Kalbitzer, S., Phys. Status Solidi B 100, 43 (1980).CrossRefGoogle Scholar
13. Shanks, H. R., Jeffrey, F. R., and Lowry, M. E., J. Phys. (Paris) C4, 42, 773 (1981).Google Scholar
14. Biswas, R., Kwon, I., Bouchard, A. M., Soukoulis, C. M., and Grest, G. S., Phys. Rev. B 39, 5101 (1989).CrossRefGoogle Scholar