Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T10:05:41.224Z Has data issue: false hasContentIssue false

Hydrogen Incorporation During Deposition of a-Si:H From an Intense Source of SiH3

Published online by Cambridge University Press:  15 February 2011

M. C. M. Van De Sanden
Affiliation:
Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
R. J. Severens
Affiliation:
Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
W. M. M. Kessels
Affiliation:
Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
F. Van De Pas
Affiliation:
Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
L. Van Ijzendoorn
Affiliation:
Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
D. C. Schram
Affiliation:
Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
Get access

Abstract

The incorporation of hydrogen during the fast deposition of a-Si:H from an expanding thermal arc is investigated by means of isotope labeling of the precursor gases silane and hydrogen. It is found that hydrogen in a-Si.H originates dominantly from the silyl radical. A small fraction of the hydrogen in a-Si:H is due to exchange reaction of atomic hydrogen in the plasma with hydrogen chemisorbed on the surface during growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Luft, W. and Simon Tsuo, Y., “Hydrogenated amorphous silicon alloy deposition processes”, (Marcel Dekker, New York, 1993)Google Scholar
2 Ganguly, G. and Matsuda, A., Mat. Res. Soc. Symp. Vol. 258, 39 (1992)Google Scholar
3Plasma deposition of amorphous silicon-based materials”, Ed. Bruno, G., Capezutto, P. and Madan, A., (Academic Press, Boston, 1995)Google Scholar
4 Street, R., “Hydrogenated amorphous silicon”, (Cam bridge University Press, Cambridge, 1991)Google Scholar
5 Beyer, W. and Zastrow, U., Mat. Res. Soc. Symp. Vol. 420, 497 (1996)Google Scholar
6 Severens, R.J., van de Sanden, M.C.M., Verhoeven, H.J.M., Bastiaansen, J. and Schram, D.C., Mat. Res. Soc. Symp. Vol. 420, 341 (1996)Google Scholar
7 van Ijzendoorn, L., Analytica Chimica Acta 297, 5572 (1994)Google Scholar
8 Maeda, K., Kuroe, A. and Umezu, I., Phys. Rev. B 51 10635 (1995)Google Scholar
9 Matsuda, A., Nomoto, K., Takeuchi, Y., Suzuki, A., Yuuki, A. and Perrin, J., Surface Science 227, 50 (1990)Google Scholar
10 Koleske, D.D., Gates, S.M. and Jackson, B., J. Chem. Phys. 101, 3301 (1994)Google Scholar
Chiang, C.-M., Gates, S.M., Lee, S.S., Kong, M. and Bent, S.F., submitted for publicationGoogle Scholar
11 Toyoshima, Y., Arai, K., Matsuda, A., Tanaka, K., J. Non-Cryst. Solids 137&138, 765 (1991)Google Scholar