Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-13T03:06:38.147Z Has data issue: false hasContentIssue false

Hydrogenated Carbon-Nitrogen Films Obtained by Pecvd using Acetylene and Nitrogen as Precursor Gases

Published online by Cambridge University Press:  10 February 2011

L. G. Jacobsohn
Affiliation:
Departamento de Física, PUC-Rio, Rio de Janeiro, 22452–970, RJ, Brazil.
D. F. Franceschini
Affiliation:
Instituto de Física, Universidade Federal Fluminense, Niterói, 24210–340, RJ, Brazil.
F. L. Freire Jr
Affiliation:
Departamento de Física, PUC-Rio, Rio de Janeiro, 22452–970, RJ, Brazil.
Get access

Abstract

Amorphous hydrogenated carbon-nitrogen films were deposited by plasma enhanced chemical vapor deposition (PECVD) using acetylene-nitrogen mixtures. The atomic composition and density of the films were determined by Rutherford backscattering spectrometry (RBS) and elastic recoil detection (ERDA). Raman and Infrared spectroscopies monitored their structure. The addition of nitrogen gas to the deposition atmosphere resulted in a decrease in the film deposition rate. The increase of the nitrogen content is accompanied by the reduction of the carbon content. The IR absorption spectra show an increase intensity of the C=N Raman band and the N-H and CsN stretching bands. On the other hand, the IR results show a decrease in the intensity of the C-H stretching band. Raman results suggest an increase with the nitrogen content of the fraction of carbon atoms in a sp2 state of hybridization with the nitrogen content. The internal compressive stress has been measured by the determination of the bending of the substrate; a reduction of up to 50 % has been observed depending on the nitrogen content.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Marton, D., Boyd, K.J. and Rabalais, J.W., Int. J. Mod. Phys. B 9, 3527 (1995).Google Scholar
2. Liu, A.Y. and Cohen, M.L., Science 245, 841 (1989).Google Scholar
3. Franceschini, D.F., Freire, F.L. Jr and Silva, S.R.P., Appl. Phys. Lett. 68, 2645 (1996).Google Scholar
4. Franceschini, D.F., Achete, C.A. and Freire, F.L. Jr, Appl. Phys. Lett. 60, 3229 (1992).Google Scholar
5. Wood, P., Wydeven, T. and Tsugi, O., Thin Solid films 258, 151 (1995).Google Scholar
6. Lee, K.R., Eun, K.Y. and Rhee, J.-S., Mater. Res. Symp. Proc. 356, 233 (1995).Google Scholar
7. Freire, F.L. Jr and Franceschini, D.F., Thin Solid films 293, 236 (1997).Google Scholar
8. Mettin, S., Kaufman, J.H., Saperstein, D.D., Scotch, J.C., Heyman, J. and Haller, E.E., J. Mater. Res. 9, 396 (1994).Google Scholar
9. Silva, S.R.P., Robertson, J., Amaratunga, G.A.J., Raferty, B., Brown, L.M., Schwan, J., Franceschini, D.F. and Mariotto, G., J. Appl. Phys. 81, 2626 (1997).Google Scholar
10. Lacerda, M.M., Franceschini, D.F., Freire, F.L. Jr and Mariotto, G., Diamond Relat. Mater. 6, 631 (1997).Google Scholar
11. Freire, F.L. Jr, Jap. J. Appl. Phys. 36, 4886 (1997).Google Scholar
12. Chi, Eung Joon, Shim, Jae Yeob, Baik, Hong Koo and Sung, , Lee, Man, Appl. Phys. Lett. 71, 324(1997).Google Scholar
13. Freire, F.L. Jr, Franceschini, D.F. and Achete, C.A., Nucl. Instr. Meth. B 85, 268 (1994).Google Scholar
14. Clay, K.J., Speakman, S.P., Amaratunga, G.A.J. and Silva, S.R.P., J. Appl. Phys. 79, 7227 (1996).Google Scholar
15. Hammer, P. and Gissler, W., Diamond Relat. Mater. 5, 1152 (1996).Google Scholar
16. Kaufinan, J.H., Mettin, S. and Saperstein, D.D., Phys. Rev. B 39, 13053 (1989).Google Scholar
17. Freire, F.L. Jr, Achete, C.A., Brusa, R.S., Mariotto, G., Xeng, X.T. and Zecca, A. Z., Solid State Commun. 91, 965 (1994).Google Scholar