Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T04:11:17.023Z Has data issue: false hasContentIssue false

Hydrothermal epitaxy of lead free (Na,K)NbO3-based piezoelectric films

Published online by Cambridge University Press:  17 May 2013

Albertus D. Handoko
Affiliation:
Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602, Singapore.
Gregory K. L. Goh*
Affiliation:
Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602, Singapore.
Get access

Abstract

Lead free niobate solid solutions can exhibit piezoelectric properties comparable to that of lead zirconate titanate piezoelectrics in the vicinity of its morphotropic phase boundary (MPB). Here we describe how (Na,K)NbO3 and (Na,K)NbO3-LiTaO3 solid solution thin films can be grown epitaxially by the hydrothermal method at temperatures of 200 °C or below in water and be made ferro- and piezoelectrically active by a simple 2 step post growth treatment.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Saito, Y. and Takao, H., Ferroelectrics 338(1), 1732 (2006).CrossRefGoogle Scholar
Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T. and Nakamura, M., Nature 432 (7013), 8487 (2004).CrossRefGoogle Scholar
Lamoreaux, R. H. and Hildenbrand, D. L., J. Phys. Chem. Ref. Data 13(1), 151173 (1984).CrossRefGoogle Scholar
Lange, F. F., Science 273 (5277), 903909 (1996).CrossRefGoogle Scholar
Handoko, A. D. and Goh, G. K. L., Mater. Res. Innovations 15(5), 352356 (2011).CrossRefGoogle Scholar
Tan, C. K. and Goh, G. K. L., Thin Solid Films 515(16), 65726576 (2007).CrossRefGoogle Scholar
Tan, C. K., Goh, G. K. L. and Cheah, W. L., Thin Solid Films 515(16), 65776581 (2007).CrossRefGoogle Scholar
Kato, K., Acta Crystallogr., Sect. B 32(3), 764767 (1976).CrossRefGoogle Scholar
Kato, K. and Tamura, S., Acta Crystallogr., Sect. B 31(3), 673677 (1975).CrossRefGoogle Scholar
Handoko, A. D., Goh, G. K. L. and Chew, R. X., CrystEngComm 14(2), 421427 (2012).CrossRefGoogle Scholar
Yao, K., Shannigrahi, S. and Tay, F. E. H., Sensor Actuat. A: Phys. 112(1), 127133 (2004).CrossRefGoogle Scholar
Yao, K. and Tay, F. E. H., Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on 50(2), 113116 (2003).Google Scholar
Handoko, A. D. and Goh, G. K. L., Green Chem. 12(4), 680687 (2010).CrossRefGoogle Scholar
Goh, G. K. L., Lange, F. F., Haile, S. M. and Levi, C. G., J. Mater. Res. 18(2), 338345 (2003).CrossRefGoogle Scholar
Handoko, A. D. and Goh, G. K. L., CrystEngComm 15(4), 672678 (2013).CrossRefGoogle Scholar
Chien, A. T., Xu, X., Kim, J. H., Sachleben, J., Speck, J. S. and Lange, F. F., J. Mater. Res. 14(8), 33303339 (1999).CrossRefGoogle Scholar
Abothu, I. R., Raj, P. M., Balaraman, D., Sacks, M. D., Bhattacharya, S. and Tummala, R. R., presented at the 9th International Symposium onAdvanced Packaging Materials: Processes, Properties and Interfaces, Atlanta, GA, 2004 (unpublished).Google Scholar