Published online by Cambridge University Press: 21 February 2011
The results of hydrothermal leach tests are intended to be used to predict long-term low-temperature glass dissolution. It is often assumed that data can be extrapolated to other conditions using an Arrhenius-type equation. Hydrothermal leaching mechanisms and their temperature dependence in R7T7 glass were investigated in static experiments lasting from 7 days to 1 year at 150°C and 250°C. Leachates, surface layers and crystalline products were analyzed by ICP, TEM, SEM, EMP, XRD and cathodoluminescence. Unexpectedly, no actual saturation conditions in solutions were reached after one year leaching at 150°C nor at 250°C. The effect of precipitation of alteration products (a silica-enriched amorphous layer and aluminosilicates [smectite at 150°C, smectite and zeolites at 250°C]) is discussed. However, the formation of large cracks in the bulk glass results in a higher glass reacting surface and a higher dissolution rate at 250°C. Arrhenius calculations cannot be used to extrapolate our hydrothermal data to lower-temperatures.