Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-02T21:36:46.942Z Has data issue: false hasContentIssue false

Imaging Electron Transport across Grain Boundaries in an Integrated Electron and Atomic Force Microscopy Platform: Application to Polycrystalline Silicon Solar Cells

Published online by Cambridge University Press:  31 January 2011

Manuel J Romero
Affiliation:
manuel.romero@nrel.gov, National Renewable Energy Laboratory, Golden, Colorado, United States
Fude Liu
Affiliation:
fude.liu@nrel.gov, National Renewable Energy Laboratory, Golden, Colorado, United States
Oliver Kunz
Affiliation:
o.kunz@unsw.edu.au, University of New South Wales, Sydney, New South Wales, Australia
Johnson Wong
Affiliation:
j.wong@unsw.edu.au, University of New South Wales, Sydney, New South Wales, Australia
Chun-Sheng Jiang
Affiliation:
chun.sheng.jiang@nrel.gov, National Renewable Energy Laboratory, Golden, Colorado, United States
Mowafak Al-Jassim
Affiliation:
mowafak.aljassim@nrel.gov, National Renewable Energy Laboratory, Golden, Colorado, United States
Armin G Aberle
Affiliation:
a.aberle@unsw.edu.au, University of New South Wales, Sydney, New South Wales, Australia
Get access

Abstract

We have investigated the local electron transport in polycrystalline silicon (pc-Si) thin-films by atomic force microscopy (AFM)-based measurements of the electron-beam-induced current (EBIC). EVA solar cells are produced at UNSW by <i>EVAporation</i> of a-Si and subsequent <i>solid-phase crystallization</i>–a potentially cost-effective approach to the production of pc-Si photovoltaics. A fundamental understanding of the electron transport in these pc-Si thin films is of prime importance to address the factors limiting the efficiency of EVA solar cells. EBIC measurements performed in combination with an AFM integrated inside an electron microscope can resolve the electron transport across individual grain boundaries. AFM-EBIC reveals that most grain boundaries present a high energy barrier to the transport of electrons for both p-type and n-type EVA thin-films. Furthermore, for p-type EVA pc-Si, in contrast with n-type, charged grain boundaries are seen. Recombination at grain boundaries seems to be the dominant factor limiting the efficiency of these pc-Si solar cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Catchpole, K. R. McCann, M. J. Weber, K. J. and Blakers, A. W. Solar Energy Materials and Solar Cells 68, 173(2001).Google Scholar
[2] Aberle, A. G. Thin Solid Films 511–512, 26(2006).Google Scholar
[3] Nast, O. Brehme, S. Neuhaus, D. H. and Wenham, S. R. IEEE Trans. Electr. Dev. 46, 2062(1999).Google Scholar
[4] Stradal, J. Scholma, G. Li, H. Werf, C.H.M. van der, Rath, J.K. Widenborg, P.I. Campbell, P. Aberle, A.G. and Schropp, R.E.I., Thin Solid Films 501, 335(2006).Google Scholar
[5] Teplin, C. W. Branz, H. M. Jones, K. M. Romero, M. J. Stradins, P. and Gall, S. Mat. Res. Soc. Symp. Proc. 989, 133(2007).Google Scholar
[6] Aberle, A. G. Straub, A. Widenborg, P. I. Sproul, A. B. Huang, Y. and Campbell, P. Prog. in Photovolt: Res. and Appl. 13, 37(2005).Google Scholar
[7] Terry, M. L. Straub, A. Inns, D. Song, D. and Aberle, A. G. Appl. Phys. Lett. 86, 172108(2005).Google Scholar
[8] Widenborg, P. I. and Aberle, A. G. J. Crystal Growth 306, 177(2007).Google Scholar
[9] Liu, F. Romero, M. J. Jones, K. M. Norman, A. G. Al-Jassim, M. M., Inns, D. and Aberle, A. G. Thin Solid Films 516, 6409(2008).Google Scholar
[10] Aberle, A. G. Proceedings of the 21 ] 21st st European Photovoltaic Solar Energy Conference, Dresden, 2006, p. 738.Google Scholar
[11] Troyon, M. and Smaali, K. Appl. Phys. Lett. 90, 212110(2007).Google Scholar
[12] B-doped p-type films can be partially compensated because of residual phosphorous contamination in the deposition chamber.Google Scholar
[13] Holt, D. B. Raza, B. and Wojcik, A. Materials Science and Engineering B42, 14(1996).]Google Scholar