Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-29T03:36:19.905Z Has data issue: false hasContentIssue false

Imaging, Structural and Chemical Analysis of Silicon Nanowires

Published online by Cambridge University Press:  11 February 2011

R. J. Barsotti Jr*
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104
J. E. Fischer
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104
C. H. Lee*
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104
J. Mahmood
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104
C. K. W. Adu
Affiliation:
Department of Physics, The Pennsylvania State University, University Park, PA 16802
P. C. Eklund
Affiliation:
Department of Physics, The Pennsylvania State University, University Park, PA 16802 Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802
*
#Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
&Department of Material Science and Engineering, KAIST, Daejon, Korea
Get access

Abstract

Laser ablation has been used to grow silicon nanowires with an average diameter of 6.7 nm ± 2.7 nm surrounded by an amorphous SiOx sheath of 1–2 nm. This paper reports the imaging, chemical and structural analysis of these wires. Due to the growth temperature and the presence of calcium impurities and trace oxygen, two distinct types of wires are found. They appear to grow by two different processes. One requires a metal catalyst, the other is catalyzed by oxygen.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhang, Z., Fan, X. H., Xu, L., Lee, C. S. and Lee, S. T., Chem. Phys. Letters 337, 18 (2001).Google Scholar
2. Yu, J., Chung, S. and Heath, J., J. Phys. Chem. B 104, 11864 (2000).Google Scholar
3. Cui, Y., Duan, X., Hu, J. and Lieber, C. M., J. Phys. Chem. B 104, 5213 (2000).Google Scholar
4. Huang, Y., Duan, X., Wei, Q. and Lieber, C. M., Science 291, 630 (2001).Google Scholar
5. Cui, Y. and Lieber, C. M., Science 291, 851 (2001).Google Scholar
6. Huang, Y., Duan, X., Cui, Y., Lauhon, L. J., Kim, K. and Lieber, C. M., Science 294, 1313 (2001).Google Scholar
7. Morales, A.M. and Lieber, C. M., Science 279, 208 (1998).Google Scholar
8. Zhang, Y.F., Tang, Y. H, Wang, N., Yu, D. P., Lee, C. S., Bello, I., and Lee, S. T., Appl. Phys. Letters 72, 1835 (1998).Google Scholar
9. Tang, Y. H., Zhang, Y.F., Wang, N., Shi, W.S., Lee, C.S., Bello, I. and Lee, S.T., J. Vac. Sci. Technol. B 19, 317 (2001).Google Scholar
10. Shi, W., Peng, H., Zheng, Y., Wang, N., Shang, N., Pan, Z., Lee, C. and Lee, S., Adv. Materials 12, 1343 (2000).Google Scholar
11. Wagner, R.S. and Ellis, W.C., Appl. Phys. Letters 4, 89 (1964).Google Scholar
12. Wang, N., Tang, Y.H., Zhang, Y.F., Lee, C.S., Bello, I. and Lee, S. T., Chem. Phys. Letters 299, 237 (1999).Google Scholar
13. Zhang, Y.F., Tang, Y.H., Wang, N., Lee, C.S., Bello, I. and Lee, S.T., J. Crystal Growth 197, 136 (1999).Google Scholar
14. Zhang, Y.F., Tang, Y.H., Lam, C., Wang, N., Lee, C.S., Bello, I. and Lee, S.T., J. Crystal Growth 212, 115 (2000).Google Scholar