Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-04T03:34:38.179Z Has data issue: false hasContentIssue false

Impact of Dopants on the PbTe Thermoelectric Efficiency

Published online by Cambridge University Press:  01 February 2011

Ka Xiong
Affiliation:
kaxiong0124@yahoo.com, University of Texas at Dallas, Materials Science and Engineering, RL10, 800 West Campbell Road, Richardson, Texas, 75080, United States
Rahul P Gupta
Affiliation:
rpg032000@utdallas.edurahul.utd@gmail.com, University of Texas at Dallas, Materials Science and Engineering, Richardson, Texas, United States
John B White
Affiliation:
JWHITE@marlow.com, marlow industries, Dallas, Texas, United States
Bruce Gnade
Affiliation:
gnade@utdallas.edu, University of Texas at Dallas, Materials Science and Engineering, Richardson, Texas, United States
Kyeongjae Cho
Affiliation:
kjcho@utdallas.edu, University of Texas at Dallas, Materials Science, 800 W. Campbell Rd., RL10, Richardson, Texas, 75080, United States, 972-883-2845
Get access

Abstract

We investigated the impact of doping group III elements (Al, Ga, In and Tl) on the electronic structure of PbTe by first principles calculations. The impurity-induced defect level changes with respect to the charge state of the impurity. We find that among the four elements, Tl is the best candidate for the enhancement of thermoelectric efficiency, consistent with the experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Dughaish, J. H. Physica 322 B, 205 (2002).Google Scholar
2 Hsu, K. -F., Loo, S. Guo, F. Chen, W. Dyck, J. S. Uher, C. Hogan, T. Polychroniadis, E. K. and Kanatzidis, M. G., Science 303, 818 (2004).Google Scholar
3 Harman, T. C. Taylor, P. J. Walsh, M. P. and LaForge, B. E. Science 297, 2229 (2002).Google Scholar
4 Hsu, K. F. Loo, S. Guo, F. Chen, W. Dyck, J. S. Uher, C. Hogan, T. Polychroniadis, E. K. and Kanatzidis, M. G., Science 303, 818 (2004).Google Scholar
5 Heremans, J. P. Jovovic, V. Toberer, E. S. Saramat, A. Kurosaki, K. Charoenphakdee, A. Yamanaka, S. Snyder, G. J. Science 321, 554 (2008).Google Scholar
6 Mahan, G. D. and Sofo, J. O. Proc. Natl. Acad. Sci. U.S.A. 93, 7436 (1996).Google Scholar
7 Lischka, K. Appl. Phys. A 29, 177 (1982).Google Scholar
8 Averkin, A. A. Kaidanov, V. I. and Mel'nik, R. B., Sov. Phys. Semicond. 5, 75 (1971).Google Scholar
9 Andreev, Yu. V. Geimann, K. I. Dabkin, I. A. Matveenko, A.V. Mozhaev, E. A. and Moizhes, B. Ya. Sov. Phys. Semicond. 9, 1235 (1976).Google Scholar
10 Weiser, K. Klein, A. and Ainhorn, M. Appl. Phys. Lett. 34, 607 (1979).Google Scholar
11 Ahmad, S. Hoang, K. and Mahanti, S. D. Phys. Rev. Lett. 96. 056403 (2006).Google Scholar
12 Hoang, K. and Mahanti, S. D. Phys. Rev. B 78, 085111 (2008).Google Scholar
13 Kresse, G. and Furthmuller, J. Comput. Mater. Sci. 6, 15 (1996); Phys. Rev. B 54, 11169 (1996).Google Scholar
14 Koike, K. Honden, T. Makabe, I. Yan, F. P. and Yano, M. J. Cryst. Growth 257, 212, (2003).Google Scholar
15 Orihashi, M. Noda, Y. Kaibe, H. T. and Nishida, I. A. Mater. Trans., JIM 39, 672 (1998).Google Scholar
16 Jovovic, V. Thiagarajan, S. J. Heremans, J. P. Komissarova, T. D. Khokhlov and Nicorici, A. J. Appl. Phys. 103, 053710 (2008).Google Scholar
17 Matsushita, Y. Wianecki, P. A. Sommer, A. T. Geballe, T. H. and Fisher, I. R. Phys. Rev. B 74, 134512 (2006).Google Scholar
18 Castellarin-Cudia, C., Surnev, S. Ramsey, M. G. and Netzer, F. P. Surf. Sci. 491, 29 (2001).Google Scholar
19 Lee, G. Chung, J. W. and Kim, J. S. J. Comput. Theor. Nanosci. 6, 1311, (2009).Google Scholar
20 Gelbstein, Y. Dashevsky, Z. and Dariel, M. P. Physica B 363, 196, (2005).Google Scholar