Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-14T04:47:08.205Z Has data issue: false hasContentIssue false

Impact of H2-preannealing of the Sapphire Substrate on the Crystallization of Low-Temperature-Deposited AlN Buffer Layer

Published online by Cambridge University Press:  01 February 2011

Michinobu Tsuda
Affiliation:
Single Crystal Division, Kyocera Corporation, 1166–6, Nagatanino, Hebimizo-cho, Youkaichi-city, Shiga 527–8555, Japan Faculty of Science and Technology, 21st Century-COE “Nano-Factory”, Meijo University, 1–501 Shiogamaguchi, Tempaku-ku, Nagoya 468–8502, Japan
Krishnan Balakrishnan
Affiliation:
Faculty of Science and Technology, 21st Century-COE “Nano-Factory”, Meijo University, 1–501 Shiogamaguchi, Tempaku-ku, Nagoya 468–8502, Japan
Motoaki Iwaya
Affiliation:
Faculty of Science and Technology, 21st Century-COE “Nano-Factory”, Meijo University, 1–501 Shiogamaguchi, Tempaku-ku, Nagoya 468–8502, Japan
Satoshi Kamiyama
Affiliation:
Faculty of Science and Technology, 21st Century-COE “Nano-Factory”, Meijo University, 1–501 Shiogamaguchi, Tempaku-ku, Nagoya 468–8502, Japan
Hiroshi Amano
Affiliation:
Faculty of Science and Technology, 21st Century-COE “Nano-Factory”, Meijo University, 1–501 Shiogamaguchi, Tempaku-ku, Nagoya 468–8502, Japan
Isamu Akasaki
Affiliation:
Faculty of Science and Technology, 21st Century-COE “Nano-Factory”, Meijo University, 1–501 Shiogamaguchi, Tempaku-ku, Nagoya 468–8502, Japan
Get access

Abstract

The effect of H2-preannealing of sapphire substrate on low-temperature (LT- ) AlN buffer layer deposited by metalorganic vapor phase epitaxy is investigated. Crystallinity of LT-AlN drastically changes with preannealing temperature variation. It is found that H2-preannealing of sapphire substrate is a requisite to get a better quality LT-AlN and as a consequence it leads to growth of better quality GaN epi-layer on it.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Amano, H., Sawaki, N., Akasaki, I. and Toyoda, Y.: Appl. Phys. Lett. 48, 353355 (1986)Google Scholar
2. Akasaki, I., Amano, H., Koide, Y., Hiramatsu, K. and Sawaki, N.: J. Cryst. Growth 98, 209219 (1989)Google Scholar
3. Tabuchi, M., Kyouzu, H., Takeda, Y., Yamaguchi, S., Amano, H. and Akasaki, I.: J. Cryst. Growth 237, 11331138 (2002)Google Scholar
4. Sumiya, M., Tanaka, M., Ohtsuka, K., Fuke, S., Ohnishi, , Ohkubo, T., Yoshimoto, I., Koinuma, H. and Kawasaki, M.: Appl. Phys. Lett. 75, 674676 (1999)Google Scholar
5. Yoshimoto, M., Maeda, T., Ohnishi, T., Koinuma, H., Ishiyama, O., Shinohara, M., Kubo, M., Miura, R. and Miyamoto, A.: Appl. Phys. Lett., 67, 26152617 (1995)Google Scholar
6. Tsuda, M., Watanabe, K., Kamiyama, S., Amano, H., Akasaki, I., Liu, R., Bell, A. and Ponce, F. A.: Appl. Surf. Sci., 216, 585589 (2003)Google Scholar
7. Koide, Y., Itoh, N., Itoh, K., Sawaki, N. and Akasaki, I.: Jpn. J. Appl. Phys. 27, 11561161 (1988)Google Scholar