Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T07:00:27.885Z Has data issue: false hasContentIssue false

The importance of high temperature electron-phonon coupling to the thermodynamic properties of Ce0.9Th0.1 and other f-electron bonded metals

Published online by Cambridge University Press:  01 February 2011

M. E. Manley
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
R. J. McQueeney
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
B. Fultz
Affiliation:
California Institute of Technology, Pasadena, California 91125
T. Swan-Wood
Affiliation:
California Institute of Technology, Pasadena, California 91125
O. Delaire
Affiliation:
California Institute of Technology, Pasadena, California 91125
E. A. Goremychkin
Affiliation:
Argonne National Laboratory, Argonne, Illinois 60439
J. C. Cooley
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
W. L. Hults
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
J. C. Lashley
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
R. Osborn
Affiliation:
Argonne National Laboratory, Argonne, Illinois 60439
J. L. Smith
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

Recent results from inelastic neutron scattering studies on Ce0.9Th0.1 are used to demonstrate the importance of electron-phonon coupling to the physical properties of f-electron bonded metals. In the case of Ce0.9Th0.1, the phonon density of states (DOS) of α-phase shows a significant softening when heated but shows no change across the α-γ transition despite the 11% volume change. This is supported by analysis of the magnetic spectra showing that most of the transition entropy can be accounted for with the crystal field and spin fluctuations. The precursor phonon softening, the lack of any phonon change across the transition, the magnetic spectra, and the volume transition itself can all be explained in terms of the atomic displacement sensitivity of the hybridization of the local f-electrons with conduction electrons. The electron-phonon coupling resulting from these displacement-sensitive electronic states appears to be essential to understanding cerium. Some of the behavior characteristic of these states, a large volume changes and precursor phonon softening, occurs in many other f-electron bonded metals suggesting that the phenomena is not unique to cerium.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Lawson, A. C., Martinez, B., Roberts, J. A., Bennett, B. I., and Richardson, J. W. Jr, Philos. Mag. B 80, 53 (2000).Google Scholar
[2] Manley, M. E., Fultz, B., McQueeney, R. J., Brown, C. M., Hults, W. L., Smith, J. L., Thoma, D. J., Osborn, R., Robertson, J. L., Phys. Rev. Lett. 86, 3076 (2001).Google Scholar
[3] Barron, T. H. K., Collins, J. G., and White, B. K., Adv. Phys., 29, 609 (1980).Google Scholar
[4] Manley, M. E., McQueeney, R. J., Fultz, B., Swan-Wood, T., Delaire, O., Goremychkin, E. A., Cooley, J. C., Hults, W. L., Lashley, J. C., Osborn, R., Smith, J. L., Phys. Rev. B, 67, 014103 (2003).Google Scholar
[5] Lawson, A. W. and Tang, T. Y., Phys. Rev. 76, 301 (1949).Google Scholar
[6] Gschneidner, K. A. Jr, Elliott, R. O. and McDonald, R. R., J. Phys. Chem. Solids 23, 1191 (1962).Google Scholar
[7] Murani, A. P., Bowden, Z. A., Taylor, A. D., Osborn, R., Marshall, W. G., Phys. Rev. B 48, 13981 (1993).Google Scholar
[8] Rajan, V. T., Phys. Rev. Lett. 51, 308 (1983).Google Scholar
[9] Allen, J. W. and Liu, L. Z., Phys. Rev. B 46, 5047 (1992).Google Scholar
[10] Harrison, W. A., Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond (Dover, 1989) p. 504.Google Scholar
[11] Johansson, B., Abrikosov, L. A., Alden, M., Ruban, A. V., Skriver, H. L., Phys. Rev. Lett. 74, 2335 (1995).Google Scholar
[12] Held, K., McMahan, A. K, Scalettar, R. T., Phys. Rev. Lett. 87, 276404 (2001).Google Scholar
[13] Dai, X., Savrasov, S. Y., Kotliar, G., Migliori, A., Ledbetter, H., Abrahams, E., Science 300, 953 (2003).Google Scholar
[14] Baskes, M. I., Muralidharan, K., Stan, M., Valone, S. M., and Cherne, F. J., JOM 55, 41 (2003).Google Scholar