Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-13T05:35:24.352Z Has data issue: false hasContentIssue false

Improved Dielectric Properties of Heterostructured Ba0.5Sr0.5TiO3 Thin Film Composites for Microwave Dielectric Devices

Published online by Cambridge University Press:  11 February 2011

M. Jain
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PR-00931, USA
S. B. Majumder
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PR-00931, USA
R. S. Katiyar
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PR-00931, USA
A. S. Bhalla
Affiliation:
Materials Research Center, Pennsylvania State University, University Park, PA 16802, USA
D. C. Agrawal
Affiliation:
Materials Science Program, Indian Institute of Technology, Kanpur U.P., India
F. W. Van Keuls
Affiliation:
Ohio Aerospace Institute, Cleveland, OH 44142, USA
F. A. Miranda
Affiliation:
NASA, Glenn Research Center, Cleveland, OH 44135, USA
R. R. Romanofsky
Affiliation:
NASA, Glenn Research Center, Cleveland, OH 44135, USA
C. H. Mueller
Affiliation:
Analex Corporation, Cleveland, OH-44135, USA
Get access

Abstract

In the present work we have deposited MgO and Ba0.5Sr0.5TiO3 (BST50) thin layers in different sequences to make MgO:BST50 hetero-structured thin films. These films were characterized by X-ray diffraction and found to be highly (100) textured. The figure of merit {(C0-Cv)/(C0.tand)} of the hetero-structured films was found to be higher as compared to pure BST50 films measured at 1 MHz frequency with electric field of 25.3 kV/cm. These films were used to make eight element coupled micro-strip phase shifter and characterized in a frequency range of 13–15 GHz. The high frequency figure of merit (k factor, defined as the ratio of degree of phase shift per dB loss) measured at around 14 GHz with electric field of 333 kV/cm has been markedly improved (around 64.28 °/dB for hetero-structured film as compared to 24.65 °/dB for pure film). Improvement in dielectric properties in a wide frequency range in the MgO:BST are believed to be due to the higher densification of the hetero-structured films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Babbit, R. W., Koscica, T.E., and Drach, W. C., Microwave J. 1992, 63.Google Scholar
2. Van Keuls, F.W., Mueller, C.H., Romanofsky, R.R., Warner, J.D., Miranda, F.A., Majumder, S.B., Jain, M., Martinez, A., Katiyar, R.S., Jiang, H., Integrated Ferroelectrics 42, 207 (2002).Google Scholar
3. Ayguavives, F.T., Tombak, A., Maria, J.P., Stauf, G.T., Ragaglia, C., Roeder, J., Mortazawi, A., and Kingon, A.S., Proceedings of the 12th IEEE International Symposium 1, 365 (2000).Google Scholar
4. Majumder, S.B., Jain, M., Martinez, A., Katiyar, R.S., Van Keuls, F.W., and Miranda, F.A., J. Appl. Phys. 90, 896 (2001).Google Scholar
5. Wu, L., Chen, Y. C., Chou, Y.P., and Tsai, Y. T., Jpn. J. Appl. Phys. 38, 5612 (1999).Google Scholar
6. Sengupta, L.C. and Sengupta, S., IEEE Trans. Ultrason. Ferroelectric Freq. Control. 44, (1997) 792.Google Scholar
7. Alberta, E. F., Guo, R., and Bhalla, A.S., Ferroelectrics 268, 169 (2002).Google Scholar
8. Syncowcyznski, J., Sengupta, L.C., and Chiu, L.H., Integrated Ferroelectrics 22, 342 (1998).Google Scholar
9. Sengupta, L.C. and Synowcznski, J., Integrated Ferroelectrics 12, 287 (1997).Google Scholar
10. Sengupta, L.C., Sengupta, S., Rees, D.A., Syncowcyznski, J., Stowell, S., NgO, E. H., Chiu, L.H., Integrated Ferroelectrics 22, 393 (1998).Google Scholar
11. Rivkins, T.V., Perkins, J. D., Parilla, P.A., Ginley, D.S., Carlson, C. M., Sengupta, L. C., Chiu, L., Zhang, X., Zhu, Y., Sengupta, S., Mat. Res. Soc. Symp. Proc. 656E, DD5.7.1 (2001).Google Scholar
12. NgO, E., Joshi, P.C., Cole, M. W., and Hubbard, C. W., Appl. Phys. Lett. 79, 248 (2001).Google Scholar
13. Jain, M., Majumder, S.B., Katiyar, R.S., Agrawal, D.C., Bhalla, A.S., Appl. Phys. Lett. 81, 3212 (2002).Google Scholar
14. Nagai, T., Hwang, H.J., Yasuoka, M., Sando, M., and Niihara, , J. Am. Ceram. Soc. 81, 425 (1998).Google Scholar
15. Joshi, P.C., Cole, M. W., Appl. Phys. Lett. 77, 289 (2000).Google Scholar
16. Kishi, H., Okino, Y., Honda, M., Iguchi, Y., Imeda, M., Takahashi, Y., Ohsato, H., and Okuda, T., J. Appl. Phys. 36, 5954 (1997).Google Scholar
17. Miranda, F.A., Mueller, C.H., Van Keuls, F.W., and Romanofsky, R.R.. Mat. Res. Soc. Proc. 656, DD1.3.1 (2001).Google Scholar
18. Majumder, S.B., Jain, M., Martinez, A., Katiyar, R.S., Fachini, E.R., Van Keuls, F.W., Miranda, F.A., Sahoo, P.K., and Kulkarni, V. N., Mat. Res. Soc. Proc. 688, C.7.8.1 (2002).Google Scholar