Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T08:34:35.104Z Has data issue: false hasContentIssue false

Impurities and Grain Size Modeling in Recrystallized Silicon

Published online by Cambridge University Press:  01 February 2011

Valeri V. Kalinin
Affiliation:
kalinin@isp.nsc.ru, Institute of Semiconductors Physics, Department of Single Crystals and Silicon Structures, 13 Lavrent'ev Avenue, Novosibirsk, AK, 630090, Russian Federation
Alexandre M. Myasnikov
Affiliation:
alemm@netscape.net, Institute of Semiconductors Physics, Single Crystals and Silicon Structures, 13 Lavrent'ev Avenue, Novosibirsk, AZ, 630090, Russian Federation, +7(383)3333628, +7(383)3331967
Vladislav E. Zyryanov
Affiliation:
VladislavEZ@mail.ru, Novosibirsk State Technical University, Department of Radiotechnic, Electronics and Physics, 20 Marx Avenue, Novosibirsk, 630049, Russian Federation
Get access

Abstract

In our previous publications [1, 2 and 3], spreading resistance probe (SRP) measurements for quality control of metal induced lateral crystallization (MILC) of amorphous silicon (a-Si) were studied, and the mechanism of nickel diffusion was simulated using technology computer-aided design (TCAD) modeling.

Now, we continue to present the explanation of experimental results by modeling with the Synopsys TCAD package, whereby models for resistivity vs. grain size in implanted recrystallized silicon layers are implemented and compared with experiments.

Findings show that the SRP method can be used for the characterization of the MILC process of amorphous silicon and that a comparison of experimental and calculated data allows both a turn from qualitative to quantitative analysis of recrystallized silicon film and an estimate of grain size. It has been found that grain size depends on location in the MILC region and on the time and temperature of recrystallization.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Myasnikov, A. M. Poon, M. C. Chan, P. C. Ng, K. L. Chan, M. S. Chan, W. Y. Singla, S., Yuen, C. Y. Edited by Abelson, J. R., Boyce, J. B., Cohen, J. D., Matsumura, H. and Robertson, J. (Mater. Res. Soc. Proc. 715, Pittsburgh, PA, 2002) A22.11.Google Scholar
2. Myasnikov, Alexandre M. Poon, Vincent M.C. Leung, Vincent T.C. Chan, Mansun, and Cheng, Lawrence C.F. Edited by Abelson, J.R., Ganguly, G. Matsumura, H. Robertson, J. and Schiff, E. A. (Mater. Res. Soc. Proc. 762, Pittsburgh, PA, 2003) A17.2.Google Scholar
3. Agapov, Aleksey M. Kalinin, Valeri V. Myasnikov, Alexandre M. Vincent Poon, M. C. Vermeire, Bert, Edited by Collins, R. W. Taylor, P. C. Kondo, M. Carius, R. and Biswas, R. (Mater. Res. Soc. Proc. 862, Pittsburgh, PA, 2005) A6.6.Google Scholar
4. Jun, S.I. Yang, Y.H. Lee, J.B. Choi, D.K. Appl. Phys. Lett., 75, 1999, 2235.Google Scholar
5. Wang, H.M. Chan, M. Jagar, S. Poon, M. C. Qin, M. Wang, Y. Y. Ko, P. K. IEEE Trans. Electron Dev., 47, 2000, 1580.Google Scholar
6. Lee, J.N. Choi, Y.W. Lee, B.J. Ahn, B.T. Journ. Appl. Phys., 82, 1997, 2918.Google Scholar
7. Lee, K.H. Fang, Y.K. Fan, S.H. Electron. Lett., 35, 1999, 1108.Google Scholar
8. Meng, Z. Wang, M., Wong, M. IEEE Trans. Electron Dev., 47, 2000, 404.Google Scholar
9. Yoon, S.Y. Park, S.J. Kim, K.H. Jang, J. Kim, C. O. Journ. Appl. Phys. 87, 2000, 609.Google Scholar
10. Liu, G. and Fonash, S. J. Appl. Phys. Lett., 55, 1989, 660.Google Scholar
11. Radnoczi, G. Robertson, A. Hentzell, H. T. G. Gong, S.F. and Hasan, M.A. J. Appl. Phys., 69, 1991, 6394.Google Scholar
12. Hayzelden, C. Batstone, J.L. and Cammarata, R.C. Appl. Phys. Lett., 60, 1992, 225.Google Scholar
13. Clarysse, T. P.De Wolf, Bender, H. Vandervorst, W. J. Vacuum Sci. Techn B14, 1996.Google Scholar
14.Dios User's Guide, version X-2005.10, Synopsys TCAD PackageGoogle Scholar