Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T15:01:04.507Z Has data issue: false hasContentIssue false

Influence of glycidylmethacrylate functional groups attached to gelatin on the formation and properties of hydrogels

Published online by Cambridge University Press:  18 May 2015

Candy Löwenberg
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
Konstanze K. Julich-Gruner
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany
Axel T. Neffe
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
Andreas Lendlein
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
Get access

Abstract

Gelatin functionalized with glycidyl methacrylate (GMA) has been shown to allow crosslinking by photopolymerization and metathesis reaction. However, side chain functionalization of gelatin might reduce triple helicalization, which influences mechanical properties of gelatin-based polymer networks. Here, the influence of glycidylmethycrylation of gelatin on the chain organization, swelling, and mechanical properties is investigated by comparing among each other physical gels prepared from GMA-gelatin solutions of different concentrations (5-20 wt.-%) by drying and rehydration. An increase of GMA-gelatin concentration from 5 wt.-% to 20 wt.-% led to an increased density of produced gelatin films and a decreasing water uptake of the films from 1160 wt.-% to 730 wt.-%, while the storage modulus was increasing about one order of magnitude from 440 Pa to 4090 Pa. The relative single and triple helix content was not influenced by the variation of polymer concentration.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tronci, G., Neffe, A.T., Pierce, B.F. and Lendlein, A., J. Mater. Chem. 20, 8875 (2010).CrossRefGoogle Scholar
Pierce, B.F., Pittermann, E., Ma, N., Gebauer, T., Neffe, A.T., Hölscher, M., Jung, F. and Lendlein, A., Macromol. Biosci. 12, 312 (2012).CrossRefGoogle Scholar
Pierce, B.F., Tronci, G., Rößle, M., Neffe, A.T., Jung, F. and Lendlein, A., Macromol. Biosci. 12, 484 (2012).CrossRefGoogle Scholar
Neffe, A.T., Chua, K., Luetzow, K., Pierce, B.F., Lendlein, A. and Abell, A.D., Polym. Adv. Technol. 25, 1371 (2014).CrossRefGoogle Scholar
Zaupa, A., Neffe, A.T., Pierce, B.F., Nöchel, U. and Lendlein, A., Biomacromolecules 12, 75 (2010).CrossRefGoogle Scholar
Djabourov, M., Leblond, J. and Papon, P., J. Phys. France 49, 319 (1988).CrossRefGoogle Scholar
Gornall, J.L. and Terentjev, E.M., Soft Matter 4, 544 (2008).CrossRefGoogle Scholar
Bubnis, W.A. and Ofner, C.M., Anal. Biochem. 207, 129 (1992).CrossRefGoogle Scholar
Pfister, P.M., Wendlandt, M., Neuenschwander, P. and Suter, U.W., Biomaterials 28, 567 (2007).CrossRefGoogle Scholar
Erman, B. and Flory, P.J., Macromolecules 19, 2342 (1986).CrossRefGoogle Scholar
Tanioka, A., Tazawa, T., Miyasaka, K. and Ishikawa, K., Biopolymers 13, 753 (1974).CrossRefGoogle Scholar
Kumagai, H., Fujii, T., Inukai, T. and Yano, T., Biosci. Biotechnol. Biochem. 57, 532 (1993).CrossRefGoogle Scholar