Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T08:56:58.293Z Has data issue: false hasContentIssue false

Influence of Growth Parameters on the Deep Level Spectrum in MBE-Grown n-GaN

Published online by Cambridge University Press:  01 February 2011

A. R. Arehart
Affiliation:
Department of Electrical Engineering, The Ohio State University, Columbus, OH 43210
C. Poblenz
Affiliation:
Materials and Electrical and Computer Engineering Departments, University of California, Santa Barbara, CA 93016
B. Heying*
Affiliation:
Materials and Electrical and Computer Engineering Departments, University of California, Santa Barbara, CA 93016
J. S. Speck
Affiliation:
Materials and Electrical and Computer Engineering Departments, University of California, Santa Barbara, CA 93016
U. K. Mishra
Affiliation:
Materials and Electrical and Computer Engineering Departments, University of California, Santa Barbara, CA 93016
S. P. DenBaars
Affiliation:
Materials and Electrical and Computer Engineering Departments, University of California, Santa Barbara, CA 93016
S. A. Ringel
Affiliation:
Department of Electrical Engineering, The Ohio State University, Columbus, OH 43210
*
* Current Address: Northrup-Grumman, Redondo Beach, CA
Get access

Abstract

The impact of growth temperature and Ga/N flux ratio on deep levels in GaN grown by molecular beam epitaxy (MBE) is systematically investigated using both deep level optical spectroscopy (DLOS) and deep level transient spectroscopy (DLTS) in a study designed to map out the presence and concentration of defects over a defined region of the MBE GaN growth phase diagram. A series of Si-doped GaN films were grown to cover a substrate temperature range and a Ga/N flux ratio range that spans from the N stable to the Ga droplet regimes along both variables. Identical growth templates were used to eliminate variations in dislocations between samples so that point defect variations could be tracked. For these samples, traps are detected at EC-Et=0.25, 0.60, 0.90, 1.35, 2.40, 3.04, and 3.28 eV. The near valence bands states at EC–3.04 and EC–3.28 eV are found to be strongly dependent on Ga/N flux with decreased concentrations as a function of increasing Ga flux toward the Ga droplet regime, but with little effect from growth temperature. The EC-1.35 eV level shows a strong dependence on growth temperature and only slight dependence on Ga/N flux ratio. In contrast, the concentration of the EC-Et=0.25, 0.90 eV levels increased with increasing Ga flux toward the Ga droplet regime, while the EC-Et=0.60 shows no dependence. The variation in concentration of the EC-2.40 eV level that has been related to VGa was difficult to quantify, but tends to increase towards nitrogen rich growth. The dependencies for the detected states with respect to growth temperature and Ga/N flux ratio suggest different physical point defect sources.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Polenta, L., Fang, Z-Q., and Look, D. C., Appl. Phys. Lett. 76, 2086 (2000).Google Scholar
2. Goodman, S. A., Auret, F. D., Koschnick, F. K., Spaeth, J.-M., Beaumont, B., and Gibart, P., Appl. Phys. Lett. 74, 809 (1999).Google Scholar
3. Tarsa, E. J., Heying, B., Wu, X. H., Fini, P., DenBaars, S. P., and Speck, J. S., J. Appl. Phys. 82, 5472 (1997).Google Scholar
4. Heying, B., Smorchkova, I., Poblenz, C., Elsass, C., Fini, P., DenBaars, S., Mishra, U., and Speck, J. S., Appl. Phys. Lett. 77, 2885 (2000).Google Scholar
5. Heying, B., Averbeck, R., Chen, L. F., Haus, E., Riechert, H., and Speck, J. S., J. Appl. Phys. 88, 1855 (2000).Google Scholar
6. Hierro, A., Kwon, D., Ringel, S. A., Hansen, M., Speck, J. S., Mishra, U. K., and DenBaars, S. P., Appl. Phys. Lett. 76, 3064 (2000).Google Scholar
7. Hierro, A., Arehart, A. R., Heying, B., Hansen, M., Mishra, U. K., DenBaars, S. P., Speck, J. S., and Ringel, S. A., Appl. Phys. Lett. 80, 805 (2002).Google Scholar
8. Armstrong, A., Arehart, A. R., Moran, B., DenBaars, S. P., Mishra, U. K., Speck, J. S. and Ringel, S. A., to be published.Google Scholar
9. Wright, A. F., J. Appl. Phys. 92, 2575 (2002).Google Scholar
10. Hierro, A., Ph.D. thesis, Ohio State University, 2001.Google Scholar
11. Blood, P. and Orton, J. W., The Electrical Characterization of Semiconductors: Majority Carriers and Electron States, (Academic Press Inc., San Diego, 1992). pp. 698700.Google Scholar
12. Lucovsky, G., Solid State Commun. 3, 299 (1965).Google Scholar
13. Hierro, A., Ringel, S. A., Hansen, M., Speck, J. S., Mishra, U. K., and DenBaars, S. P., Appl. Phys. Lett. 77, 1499 (2000).Google Scholar
14. Hierro, A., Hansen, M., Boeckl, J. J., Zhao, L., Speck, J. S., Mishra, U. K., DenBaars, S. P., and Ringel, S. A., Phys. Stat. Sol. (b) 228, 937 (2001).Google Scholar
15. Van de Walle, C. G., Phys. Rev. B 56, R10 020 (1997).Google Scholar
16. Hierro, A., Arehart, A. R., Heying, B., Hansen, M., Speck, J. S., Mishra, U. K., DenBaars, S. P., and Ringel, S. A., Phys. Stat. Sol. (b) 228, 309 (2001).Google Scholar