Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T07:15:11.907Z Has data issue: false hasContentIssue false

Influence of methane concentration on the electric transport properties in heavily boron-doped nanocrystalline CVD diamond films

Published online by Cambridge University Press:  09 March 2011

Stoffel D. Janssens
Affiliation:
Hasselt University, Institute for Materials Research (IMO), Diepenbeek, Belgium
Paulius Pobedinskas
Affiliation:
Hasselt University, Institute for Materials Research (IMO), Diepenbeek, Belgium
Vladimíra Petráková
Affiliation:
Academy of Sciences of the Czech Republic, v.v.i., Institute of Physics, Prague, Czech Republic
Miloš Nesládek
Affiliation:
Hasselt University, Institute for Materials Research (IMO), Diepenbeek, Belgium IMEC vzw, Division IMOMEC, Diepenbeek, Belgium
Ken Haenen
Affiliation:
Hasselt University, Institute for Materials Research (IMO), Diepenbeek, Belgium IMEC vzw, Division IMOMEC, Diepenbeek, Belgium
Patrick Wagner
Affiliation:
Hasselt University, Institute for Materials Research (IMO), Diepenbeek, Belgium IMEC vzw, Division IMOMEC, Diepenbeek, Belgium
Get access

Abstract

A study is presented on the morphology and electric properties of heavily boron-doped nanocrystalline diamond (B:NCD) thin films (≈150snm) grown with two different C/H-ratios (1% and 5%) and a fixed 5000sppm B/C-ratio in gas phase on fused silica substrates. AFM measurements confirm that a higher C/H-ratio leads to smaller grains and more grain boundaries. Electric transport measurements reveal a higher resistivity and a lower mobility as function of the C/H-ratio for all temperatures measured. The resistivity of the 1% sample is almost not temperature dependent while the 5% sample is much more temperature dependent. The electric transport properties of the grain boundaries, more present in the 5% sample, can be responsible for the difference in transport properties of both samples. The active boron concentration, calculated from the electric transport measurements, is remarkably higher for the 5% sample which indicates there is more boron incorporation for higher C/H-ratios. Although both samples are disordered metals, the 1% sample with the least grain boundaries tends more to the behavior of a highly doped single crystalline diamond film, which behaves like a real metal when heavily boron-doped.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gajewski, W., Achatz, P., Williams, O.A., Haenen, K., Bustarret, E., Stutzmann, M., and Garrido, J., Phys. Rev. B 79, 045206 (2009).Google Scholar
2. Achatz, P., Gajewski, W., Bustarret, E., Marcenat, C., Piquerel, R., Chapelier, C., Dubouchet, T., Williams, O.A., Haenen, K., Garrido, J.A., and Stutzmann, M., Phys. Rev. B 79, 201203 (2009).Google Scholar
3. Willems, B.L., Dao, V.H., Vanacken, J., Chibotaru, L.F., Moshchalkov, V.V., Guillamon, I., Suderow, H., Vieira, S., Janssens, S.D., Williams, O.A., Haenen, K., and Wagner, P., Phys. Rev. B 80, 224518 (2009).Google Scholar
4. Zhang, G., Vanacken, J., Van de Vondel, J., Decelle, W., Fritzsche, J., Moshchalkov, V.V., Willems, B.L., Janssens, S.D., Haenen, K., and Wagner, P., J. Appl. Phys. 108, 013904 (2010).Google Scholar
5. Villar, M.P., Alegre, M.P., Araujo, D., Bustarret, E., Achatz, P., Saminadayar, L., Bauerle, C., and Williams, O.A., Phys. Stat. Sol. (a) 206, 19861990 (2009).Google Scholar
6. Bustarret, E., Phys. Stat. Sol. (a) 205, 9971008 (2008).Google Scholar
7. Mares, J.J., Hubik, P., Kristofik, J., and Nesladek, M., Sci. Technol. Adv. Mater. 9, 044101 (2008).Google Scholar
8. Daenen, M., Williams, O.A., D’Haen, J., Haenen, K., and Nesladek, M., Phys. Stat. Sol. (a) 203, 30053010 (2006).Google Scholar
9. Williams, O.A., Douheret, O., Daenen, M., Haenen, K., Osawa, E., and Takahashi, M., Chem. Phys. Lett. 445, 255258 (2007).Google Scholar
10. May, P.W. and Mankelevich, Y.A., J. Phys. Chem. C 112, 1243212441 (2008).Google Scholar
11. Borst, T.H., and Weis, O., Phys. Stat. Sol. (a) 154, 423444 (1996).Google Scholar