Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-04T01:24:02.135Z Has data issue: false hasContentIssue false

Influence of Oxidation On Boron Sgregation to Grain Boundaries of In-Situ Fractured Ni3Al Alloys

Published online by Cambridge University Press:  21 March 2011

S. A. Koch
Affiliation:
Department of Applied Physics, Materials Science Center and Netherlands Institute for Metals Research, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
D. T. L van Agterveld
Affiliation:
Department of Applied Physics, Materials Science Center and Netherlands Institute for Metals Research, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
G. Palasantzas
Affiliation:
Department of Applied Physics, Materials Science Center and Netherlands Institute for Metals Research, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Get access

Abstract

Scanning electron and scanning Auger microscopy studies were performed on in-situ fractured B-doped hypostoichiometric Ni3Al alloys. The Auger measurements on the fracture surface showed a very small amount or the total absence of B. Further, B segregated to the grain boundaries during subsequent exposure to the ambient system ultra-high vacuum environment at room temperature. The B segregation appeared to be driven by a mechanism of electronic nature related to Ni enrichment and O supplied from the environment. Ni-oxidation at room temperature is in accordance with model predictions for small beam sizes (≤10 µm) based on the premise that the electron beam creates additional nucleation sites around of which oxide growth occurs. With increasing the size of the e-beam the oxidation process becomes slower and chemisorption of oxygen plays a significant role. As a result the Ni-oxide depth decreases drastically with increasing spot size and offers an alternative route for monitoring the thickness of NiO in a nanometer range.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] White, C. L. and Choudhury, A., Mat. Res. Soc. Symp. Proc. 81, 427 (1987).Google Scholar
[2] Physical Metallugy and Processing of Intermetallic Compounds ed. by Stoloff, N. S. and Sikka, V. K. (Chapman & Hall, New York, 1996, USA).Google Scholar
[3] Pestman, B. J., Hosson, J. Th. M. De, Vitek, V., Schapink, F. W., Philos. Mag. A 64, 4 (1991) 951969.Google Scholar
[4] White, C. L. and Stein, D. F., Metall. Trans. A 9A, 13(1978).Google Scholar
[5] Hofmann, S. and Stepanova, M. G., Appl. Surf. Sci. 90, 227 (1995).Google Scholar
[6] Muller, D. A., Subramanian, S., Batson, P. E., Silcox, J., and Sass, S. L., Act. Mater. 44, 1637 (1996).Google Scholar
[7] Subramanian, S., Muller, D. A., Silcox, J., and Sass, S. L., Act. Mater. 44, 1647 (1996).Google Scholar
[8] Liu, C. T., White, C. L., and Horton, J. A., Acta Mater. 33, 213 (1985).Google Scholar
[9] Schulson, E. M., Weihs, T. P., Viens, D. V., and Baker, I., Acta metall. 33, 1587 (1985); E. M. Schulson, T. P. Weihs, I. Baker, H. J. Frost and J. A. Horton, Acta Metall. 34, 1395 (1986).Google Scholar
[10] Eberhart, M. E. and Vvedensky, D. D., Phys. Rev. Lett. 58, 61 (1987).Google Scholar
[11] Chuang, T. H., Pan, Y. C., and Hsu, S.E., Metall. Trans. A22, 1801 (1991).Google Scholar
[12] Watanabe, T. and Tsurekawa, S., Act. Mater. 47, 4171 (1999).Google Scholar
[13] Slezak, J. A., Zion, B. D., Sibener, S.J., Surf. Sci. 442 (1999) L983.Google Scholar
[14] Zion, B. D., Hanbicki, A. T., Sibener, S.J., Surf. Sci. 417 (1998) L1154.Google Scholar
[15] Stirniman, M. J., Wei, L., Sibener, S.J., J. Chem. Phys. 103 (1995) 451.Google Scholar
[16] Li, W., Stirniman, M.J., Sibener, S.J., J. Vac. Sci. Technol A 13 (1995) 1574.Google Scholar
[17] Li, W., Stirniman, M. J., Sibener, S. J., Surf. Sci. 329 (1995) L593.Google Scholar
[18] Holloway, P. H. and Hudson, J. B., Surf. Sci. 43 (1974) 123; Surf. Sci. 43 (1974) 141.Google Scholar
[19] Snow, E. S., Campbell, P. M., and Perkins, F. K., Naval Research Reviews Vol. XLIX, (1997) 15.Google Scholar
[20] Noguess, J. and Shuller, I. K., J. Mag. Mag. Mat. 192 (1998) 203.Google Scholar
[21] Sibener, S. J., Buss, R. J., Ng, C. Y., Lee, Y. T., Rev. Sci. Instrum. 51 (1980) 167.Google Scholar
[22] Peters, P. N., Grogory, H. C., Swann, J. T., Appl. Opt. 25 (1986) 1290.Google Scholar
[23] Becker, C., Kandler, J., Raaf, H., Linke, R., Pelster, T., Drager, M., Tanemura, M. and Wandelt, K., J. Vac. Sci. Technol. A 16, 1000 (1998).Google Scholar
[24] Koch, S. A., Agterveld, D. T. L. van, Palasantzas, G., Hosson, J. Th. M. De, submitted J. Mat. Research (2000).Google Scholar