Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T07:05:03.004Z Has data issue: false hasContentIssue false

Influence of Spontaneous and Piezoelectric Polarizations on the Lattice Dynamics of III-Nitride Structures

Published online by Cambridge University Press:  21 March 2011

Jérôme Gleize
Affiliation:
Laboratoire de Physique des Solides, UMR 5477 CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 4, France
Jean Frandon
Affiliation:
Laboratoire de Physique des Solides, UMR 5477 CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 4, France
Marie A. Renucci
Affiliation:
Laboratoire de Physique des Solides, UMR 5477 CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 4, France
Friedhelm Bechstedt
Affiliation:
Institut für Festkörpertheorie und Theoretische Optik, Friedrich Schiller Universität, D-07743 Jena, Germany
Get access

Abstract

The influence of pyroelectric and piezoelectric polarizations on the lattice dynamics of strained III-nitride based structures is investigated within a macroscopic framework. New relationships between stress and strain are derived, which take into account the piezoelectric fields, which appear in the strained III-nitride layers. Consequently, the strained phonon frequencies in such systems differ from those calculated within the elasticity theory framework. In the case of strained, free-standing GaN/AlN superlattices grown along the [0001] axis, the difference of the spontaneous polarizations of GaN and AlN also contributes to the change in the effective strain along the growth direction. The corresponding shift of the zone center phonon frequencies of GaN and AlN might be negligible or significant, depending on the value of the ratio of the GaN and AlN layer thickness.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bernardini, F., Fiorentini, V. and Vanderbilt, D., Phys. Rev. B 56, R10024 (1997).Google Scholar
2. Bernardini, F., Fiorentini, V. and Vanderbilt, D., Phys. Rev. Lett. 79, 3958 (1997).Google Scholar
3. Leroux, M., Grandjean, N., Massies, J., Gil, B., Lefebvre, P. and Bigenwald, P., Phys. Rev. B 60, 1496 (1999).Google Scholar
4. Bernardini, F. and Fiorentini, V., Phys. Status. Solidi (b) 216, 391 (1999).Google Scholar
5. Demangeot, F., Frandon, J., Renucci, M. A., Briot, O., Gil, B. and Aulombard, R., Solid State Commun. 100, 207 (1996).Google Scholar
6. Wagner, J. M. and Bechstedt, F., Appl. Phys. Lett. 77, 346 (2000).Google Scholar
7. Gleize, J., Frandon, J., Renucci, M. A. and Bechstedt, F., Phys. Rev. B 63, 73308 (2001).Google Scholar
8. Bourret, A., Adelmann, C., Daudin, B., Feuillet, G. and Mula, G., to be published in Phys. Rev. B (2001).Google Scholar
9. Born, M. and Huang, K., Dynamical Theory of Crystal Lattices, (Clarendon, Oxford, 1954) p. 225229.Google Scholar
10. Polian, A., Grimsditch, M. and Grzegory, I., J. Appl. Phys. 79, 3343 (1996).Google Scholar
11. Neil, L. E. Mc, Grimsditch, M. and French, R. H., J. Am. Ceram. Soc. 76, 1132 (1993).Google Scholar
12. Gleize, J., Demangeot, F., Frandon, J., Renucci, M. A., Widmann, F. and Daudin, B., Appl. Phys. Lett. 74, 703 (1999).Google Scholar