Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T06:50:49.161Z Has data issue: false hasContentIssue false

The influence of the deposition energy on thin film formation: Co on Si(111)

Published online by Cambridge University Press:  01 February 2011

Koen Vanormelingen
Affiliation:
Katholieke Universiteit Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200 D, 3001 Leuven, Belgium
Bart Degroote
Affiliation:
Katholieke Universiteit Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200 D, 3001 Leuven, Belgium
André Vantomme
Affiliation:
Katholieke Universiteit Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200 D, 3001 Leuven, Belgium
Get access

Abstract

The deposition of a thin film on a substrate surface can be achieved with a wide variety of techniques. Deposition using low energy ion beams is not a common technique, but it yields promising features, due to the hyperthermal nature of the deposited ions. With low energy ion deposition, it is possible to grow films with good characteristics at significantly lower temperatures compared to thermal deposition. The quality of these films critically depends on the energy of the impinging ions. We investigated the influence of the energy on the surface morphology for the deposition of Co onto Si(111). The roughness of this surface decreases significantly when the ion energy is increased, until it reaches a minimum at 25 eV. When the ion energy is further increased, the surface roughness increases again. This behavior can be explained by taking into account the interplay between the beneficial and detrimental effects due to the ion energy. Beneficial effects such as enhanced mobility and improved layer-by-layer growth cause a decrease in surface roughness when the deposition energy is increased from thermal to 25 eV. For energies above that value, undesirable effects such as defect creation and pileup dominate, leading to an increase in surface roughness. This study shows that low energy ion deposition can be used to improve the surface quality of a thin film by choosing the optimal deposition energy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Tung, R.T., Mater. Chem. Phys. 32, 107 (1992)Google Scholar
[2] Gilmer, G.H. and Roland, C., Appl. Phys. Lett. 65, 824 (1994)Google Scholar
[3] Zuhr, R.A., Pennycook, S.J., Noggle, T.S., Herbots, N., Haynes, T.E. and Appleton, B.R., Nucl. Instr. Meth. B37/38, 16 (1989)Google Scholar
[4] Lee, S.M., Ada, E.T., Lee, H. and Rabalais, J.W., Nucl. Instr. Meth. B157, 220 (1999)Google Scholar
[5] Marton, D., Boyd, K.J. and Rabalais, J.W., Chem. Phys. Lett. 283, 215 (1998)Google Scholar
[6] Jacobsen, J., Cooper, B.H. and Sethna, J.P., Phys. Rev. B58, 15847 (1998)Google Scholar
[7] Pomeroy, J.M., Jacobsen, J., Hill, C.C., Cooper, B.H. and Sethna, J.P., Phys. Rev. B66, 235412 (2002)Google Scholar
[8] Goldberg, R.D., Armour, D.G., van den Berg., J.A., Cook, C.E.A., Whelan, S., Zhang, S., Knorr, N. and Foad, M.A., Rev. Sci. Instr. 71, 1032 (2000)Google Scholar
[9] Degroote, B., Vantomme, A., Pattyn, H. and Vanormelingen, K., Phys. Rev. B65, 195401 (2002)Google Scholar
[10] Dekoster, J., Degroote, B., Pattyn, H., Langouche, G., Vantomme, A. and Degroote, S., Appl. Phys. Lett. 75, 938 (1999)Google Scholar
[11] Ruan, L. and Chen, D.M., Appl. Phys. Lett. 72, 3464 (1998)Google Scholar
[12] Rattunde, O., Moseler, M., Häfele, A., Kraft, J., Rieser, D. and Haberland, H., J. Appl. Phys. 90, 3226 (2001)Google Scholar
[13] Rabalais, J.W., Al-Bayati, A.H., Boyd, K.J., Marton, D., Kulik, J., Zhang, Z. and Chu, W.K., Phys. Rev. B53, 10781 (1996)Google Scholar
[14] Ziegler, J.F., Biersack, J.P. and Littmark, U., The Stopping and Ranges of Ions in Solids, (Pergamon, 1985)Google Scholar
[15] Ziegler, J.F., private communicationGoogle Scholar
[16] Lifshitz, Y., Kasi, S.R., Rabalais, J.W. and Eckstein, W., Phys. Rev. B41, 10468 (1990)Google Scholar