Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-04T05:39:48.414Z Has data issue: false hasContentIssue false

The influence of the internal microstructure on the surface parameters of polycrystalline thin films

Published online by Cambridge University Press:  21 March 2011

C. Eisenmenger-Sittner
Affiliation:
Institut für Angewandte und Technische Physik, Technische Universität Wien, Wiedner Hauptstraße 8-10 A-1040 Vienna, Austria
A. Bergauer
Affiliation:
Institut für Angewandte und Technische Physik, Technische Universität Wien, Wiedner Hauptstraße 8-10 A-1040 Vienna, Austria
Get access

Abstract

Physical Vapor Deposition (PVD) processes commonly lead to the formation of polycrystalline thin films due to the effects of island nucleation and growth. Scanning probe Methods such as Atomic Force Microscopy (AFM) or Scanning Tunneling Microscopy (STM) are widely used for the characterization of the film surface. The topographic data obtained from these measurements can be converted to roughness values, Power Spectral Densities (PSD's) or correlation functions.

It is the objective of this paper to evaluate the possibilities to characterize the polycrystalline template which generates the film surface solely by quantities derived from topographic data. For this purpose roughness values, PSD's and correlation functions of polycrystalline Al-Films deposited on glass substrates and from simulated surfaces are compared. The main factors which influence the shape of PSD's and correlation functions are determined and possible connections between the constitution of the polycrystalline template (e. g. shape and size-distribution of the crystalline domains) and the film roughness are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Barabási, A.-L., Stanley, H. E., Fractal concepts in surface growth, (Cambridge University Press, 1995).Google Scholar
2. Kardar, M., Parisi, G., Zhang, Y.-C., Phys. Rev. Lett. 56(9) 889 (1986),Google Scholar
3. Venables, J. A., Spiller, G. D. T., Hanbücken, M., Rep. Prog. Phys. 47 399 (1984).Google Scholar
4. Bartelt, M. C., Evans, J. V., Phys. Rev. B 46 12675 (1992).Google Scholar
5. Wolf, D. E., Villain, J., Europhys. Lett. 13(5) 389(1990).Google Scholar
6. Srolovitz, D. J., J. Vac. Sci. Technol. A4(6) 2925 (1986).Google Scholar
7. Oglivy, J. A., Theory of Wave Scattering From Random Rough Surfaces, (IOP Publishing, Philadelphia, 1991).Google Scholar
8. Trofimov, V. I., Mat. Res. Soc. Proc. 440 401 (1997).Google Scholar
9. Vicsek, T., Fractal growth phenomena (World Scientific, Singapore 1989).Google Scholar
10. Sahni, P. S., Srolovitz, D. J., Grest, G. S., Anderson, M. P., Safran, S. A., Phys. Rev. B 28(5) 2705 (1983).Google Scholar
11. Eisenmenger-Sittner, C., J. Appl. Phys. 89(11) (2001), in print.Google Scholar
12. Mullins, W. W., J. Appl. Phys. 28(3) 333 (1957).Google Scholar
13. Mullins, W. W., J. Appl. Phys. 30(1) 77 (1959).Google Scholar