Published online by Cambridge University Press: 01 February 2011
In-situ characterization of composition, electronic structure and their depth profiles of surface of Cu(In1-xGax)Se2 (CIGS) film grown by three stage co-evaporation has been carried out by means of photoemission and inverse photoemission spectroscopy (PES/IPES), for the purpose of investigating the formation mechanism of the CIGS-side wide band-gap region adjacent to CBD-CdS/CIGS interface in cell structure. Sample-transportation in vacuum below 1 x 10-8 Torr yielded almost contamination-free feature of the CIGS surface. The as-transferred surface of Cu0.93(In0.65Ga0.35)Se2 grown at the identical condition for the high performance solar cell exhibited seriously Cu and Ga deficient composition. Chemical formula of this region was inbetween Cu : (In+Ga): Se = 1 : 3 : 5 and 1 : 5 : 8. In-situ UPS/IPES measurements CIGS showed that the as-grown surface region of the CIGS already had expanded band gap energy up to 1.4 eV and n-type character. A gradual decrease of band energy and a rise of valence band maximum as a function of depth from the original surface were observed. These results have revealed that the surface of CIGS by the three stage method already has the wide band gap, which might originate in so-called Cu-vacancy ordered phase.