Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-04T03:59:33.402Z Has data issue: false hasContentIssue false

In-situ Kinetics Studies on Hydrogenation of Transition Metal (=Ti, Fe) Doped Mg Films

Published online by Cambridge University Press:  31 January 2011

Zhuopeng Tan
Affiliation:
zhuopeng@gmail.com, National Institute of Standards and Technology, Materials Science and Engineering Laboratory, Gaithersburg, Maryland, United States
Edwin J. Heilweil
Affiliation:
edwin.heilweil@nist.gov, National Institute of Standards and Technology, Physics Laboratory, Gaithersburg, Maryland, United States
Leonid Bendersky
Affiliation:
leoben@nist.gov, National Institute of Standards and Technology, Materials Science and Engineering Laboratory, Gaithersburg, Maryland, United States
Get access

Abstract

In this paper we report on kinetics studies of the growth rates of a hydride phase during the metal-hydride phase transformation of Mg films doped with transition metals (=Ti, Fe). Infrared emission imaging of wedge-shaped thin films during hydrogen loading reveals different effects of Ti and Fe additives on Mg hydride growth rates. Compared to hydrogenation of pure Mg, Ti addition (atomic fraction 1.6 % and 2.3 %) does not increase the Mg hydride growth rate. However, this doping results in the formation of a thicker hydride layer residing on top of the films. The hydrogenation rate is increased by an order of magnitude for addition of atomic fraction 3.1 % of Fe and the thickness of Mg hydride layer is more than twice that of the hydride layer during hydrogenation of pure Mg. Results obtained here can be used to guide powder design for hydrogen storage applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.DOE. Hydrogen storage, http://www1.eere.energy.gov/hydrogenandfuelcells/storage/current_technology.html.Google Scholar
2. Satyapal, S. Petrovic, J. Read, C. Thomas, G. Ordaz, G.. Catal Today 120 246 (2007).Google Scholar
3. Principi, G. Agresti, F. Maddalena, A. and Russo, S. Lo, Energy, 34 2087 (2009).Google Scholar
4. Manshester, F. D. San-Martin, A., Phase Diagrams of Binary Hydrogen Alloys, ASM International, 83, (2000).Google Scholar
5. Stampferjk, J. F. Holley, C. E. and Scttle, J. F. J. Amer. Chem. Soc., 82 3504 (1960).Google Scholar
6. Oelerich, W. Klassen, T. Bormann, R. J. Alloys Comp., 315 237 (2001).Google Scholar
7. Charbonnier, J. Rango, P. de, Fruchart, D. Miraglia, S. Pontonnier, L. Rivoirard, S. Skryabina, N. Vulliet, P. J. Alloys Comp., 383 205 (2004).Google Scholar
8. Milanese, C. Girella, A. Bruni, G. Berbenni, V. Cofrancesco, P. Marini, A. Villa, M. Matteazzi, P. J. Alloys Comp., 465 396 (2008).Google Scholar
9. Huot, J. Liang, G. and Schulz, R. Appl. Phys. A72 187 (2001).Google Scholar
10. Bobet, J.L. Chevalier, B. Song, M.Y. Darriet, B. and Etourneau, J. J. Alloys Comp., 336 292 (2002).Google Scholar
11. Klyamkin, S. N. Russ. J. Gen. Chem., 77 712 (2007).Google Scholar
12. Ershova, O. G. Dobrovolsky, V. D. Solonin, Y. M. Khyzhun, O. Yu. and Koval, A. Yu. J. Alloys Comp., 464 212 (2008).Google Scholar
13. Larsson, P. Araujo, C. M. Larsson, J. A. Jena, P. and Ahuja, R. PNAS, 105 8227 (2008).Google Scholar
14. Cattania, M. G. Penka, V. Behm, R. J. Christmann, K. Ertl, G. Surf. Sci.;126 382 (1983)Google Scholar
15. Oguchi, H. Tan, Z. Heilweil, E. J. and Bendersky, L. A. Int. J. Hydro. Ener., doi:10.1016/j.ijhydene.2009.11.037 (in press) (2009).Google Scholar
16. Zaluski, L. Zaluska, A. and StromOlsen, J. O. J. Alloy. Compd. 253 70 (1997).Google Scholar
17. Varin, R. A. Czujko, T. and Wronski, Z.. Nanotechnology 17 3856 (2006).Google Scholar