Published online by Cambridge University Press: 01 February 2011
A cascaded arc expanding thermal plasma is used to deposit intrinsic hydrogenated amorphous silicon at growth rates between 0.2 and 3 nm/s. Incorporation into a single junction p-i-n solar cell resulted in an initial efficiency of 6.7%, whereas all the optical and initial electrical properties of the individual layers are comparable with RF-PECVD deposited films. In this cell the intrinsic layer was deposited at 0.85 nm/s and at a deposition temperature of 250°C, which is the temperature limit for growing the p-i-n sequence. The cell efficiency is limited by the fill factor and using a buffer layer at the p-i interface deposited with RF-PECVD at low growth rate can increase this. The increase in fill factor is a result of a lower initial defect density near the p-i interface then obtained with the expanding thermal plasma, resulting in better charge carrier collection. To use larger growth rates, while maintaining the material properties, higher deposition temperatures are required. Higher deposition temperatures result in a smaller optical bandgap for the intrinsic layer and deterioration of the p-type layer, resulting in a lower opencircuit voltage. First results on applying a buffer layer will also be presented.