Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T02:48:18.023Z Has data issue: false hasContentIssue false

Integration of nanocrystal quantum dots with crystalline semiconductor substrates: Structure, Stability, and Optical response

Published online by Cambridge University Press:  01 February 2011

Atul Konkar
Affiliation:
Nanostructure Materials & Devices Laboratory, University of Southern California, Los Angeles, CA 90089–0241
Siyuan Lu
Affiliation:
Nanostructure Materials & Devices Laboratory, University of Southern California, Los Angeles, CA 90089–0241
Anupam Madhukar
Affiliation:
Nanostructure Materials & Devices Laboratory, University of Southern California, Los Angeles, CA 90089–0241
Steven. M. Hughes
Affiliation:
Department of Chemistry, University of California, Berkeley, CA 94720
A. Paul Alivisatos
Affiliation:
Department of Chemistry, University of California, Berkeley, CA 94720
Get access

Abstract

Integration of epitaxical and colloidal semiconductor nanostructures into hybrid structures can potentially open unprecedented functionalities and applications. We present here some results of a study of the structural and optical nature of adsorbed InAs nanocrystal quantum dots (NCQDs) on GaAs(001) substrates containing buried nanostructures, providing the first evidence of excitation transfer from NCQDs to the substrate. Results are also presented for the overgrowth of GaAs on the InAs NCQDs, addressing the all important issue of approach to removal of the chemical contamination left behind by the solvent during adsorption of the NCQDS. It is shown that high structural and optical quality buried integrated structures are feasible, thus opening a new field of investigation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] See, e.g. “Nano-Optoelectronics”, Ed. Grundman, M., Springer-Verlag, Berlin (2002).Google Scholar
[2] Guha, S., Madhukar, A., and Rajkumar, K. C., Appl. Phys. Lett. 57, 2110 (1990);Google Scholar
Shchukin, V., Ledentsov, N. N., and Bimberg, D., “Epitaxy of Nanostructures”, Springer Verlag, Berlin (2003).Google Scholar
[3] Bruchez, M. P., Moronne, M., Gin, P., Weiss, S., and Alivisatos, A. P., Science, 281, 2013 (1998);Google Scholar
Chan, W. C. W. and Nie, S., Science, 281, 2016 (1998);Google Scholar
Dubertret, B., Paris, P., Norris, D. J., Noireaux, V., Brivanlou, A. H., Libchaber, A., Science 298, 1759 (2002).Google Scholar
[4] Klimov, V. I., Mikhailovsky, A. A., Xu, S., Hollingsworth, J. A., Leatherdale, C. A., Eisler, H. J., and Bawendi, M. G., Science, 290, 314 (2000);Google Scholar
Coe, S., Woo, W-K., Bawendi, M., and Bulovic, V., Nature 420, 800 (2002);Google Scholar
Huynh, W., Dittmer, J. J. and Alivisatos, A. P., Science 295, 2425 (2002)Google Scholar
[5] Cao, Y. and Banin, U., J. Am. Chem. Soc. 122, 9692 (2000).Google Scholar
[6] Konkar, A., Lu, S., Madhukar, A., J. Appl. Phys. (Submitted).Google Scholar
[7] Lu, S., Madhukar, A., and Konkar, A., (To be published)Google Scholar
[8] Thompson (Kelvin), W., Philos. Mag. 42, 449 (1871).Google Scholar
[9] Madhukar, A., Lu, S., Konkar, A., Zhang, Y., Ho, M., Hughes, S. M., and Alivisatos, A. P., Nano Lett. (To appear).Google Scholar
[10] Xie, Q., Madhukar, A., Chen, P., and Kobayashi, N. P., Phys. Rev. Lett. 75, 2541 (1995).Google Scholar
[11] Lu, S., Madhukar, A., Hughes, S. M., and Alivisatos, A. P. (To be published).Google Scholar