Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T02:30:18.040Z Has data issue: false hasContentIssue false

Investigation of biocompatibility on nitrogen-doped a-C:H film coating scaffold surface in in-vivo and in-vitro tests

Published online by Cambridge University Press:  14 January 2013

Yasuharu Ohgoe
Affiliation:
Division of Electronic and Mechanical Engineering, Tokyo Denki University, Ishizaka, Hatoyama, Saitama, 350-0394Japan
Tomoaki Wada
Affiliation:
Division of Electronic and Mechanical Engineering, Tokyo Denki University, Ishizaka, Hatoyama, Saitama, 350-0394Japan
Yasuyuki Shiraishi
Affiliation:
Institute of Development, Aging and Cancer, Tohoku University, Seiryo-machi 4-1, Aoba-ku Sendai, 980-8575Japan
Hidekazu Miura
Affiliation:
Institute of Development, Aging and Cancer, Tohoku University, Seiryo-machi 4-1, Aoba-ku Sendai, 980-8575Japan
Kenji K. Hirakuri
Affiliation:
Department of Electrical Engineering, Tokyo Denki University, Senju Asahi-cho 5, Adachi-ku, Tokyo 120-8551Japan
Akio Funakubo
Affiliation:
Division of Electronic and Mechanical Engineering, Tokyo Denki University, Ishizaka, Hatoyama, Saitama, 350-0394Japan
Tomoyuki Yambe
Affiliation:
Institute of Development, Aging and Cancer, Tohoku University, Seiryo-machi 4-1, Aoba-ku Sendai, 980-8575Japan
Yasuhiro Fukui
Affiliation:
Division of Electronic and Mechanical Engineering, Tokyo Denki University, Ishizaka, Hatoyama, Saitama, 350-0394Japan
Get access

Abstract

In this study, in order to investigate biocompatibility of nitrogen-doped hydrogenated amorphous carbon (a-C:H:N) film coating segmented polyurethane (SPU) scaffold fiber sheet (a-C:H:N-Scaffold) in in-vitro test, mouse fibroblasts (NIH 3T3) cells were grown on the a-C:H:N-Scaffold. The cell behavior was monitored by time-lapse imaging system. Additionally, the a-C:H:N-Scaffold was implanted at partial aorta descendens of a goat for 35 days. The surface morphology, composition, and wettability of the a-C:H:N-scaffold was estimated by Scanning Electron Microscope (SEM), X-ray photoelectron spectrometer (XPS), and contact angle measurement. In in-vitro test, it was observed that a-C:H:N film coating had a facilitatory effect on cell motility and cell growth. In in-vivo test, it was observed that the a-C:H:N-Scaffold surface was uniformly covered by neointima. The a-C:H:N-Scaffold surface had no thrombus formation as an inflammatory reaction and it was shown that the a-C:H:N film coating had a good blood compatibility. These results suggest that a-C:H:N film coating has good cytocompatibility and blood compatibility and it is a promising approach for improvement of biocompatibility of biomaterial surfaces.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Prasad, C. K., and Krishnan, L. K., Acta Biomaterialia 4, 182 (2008).CrossRefGoogle Scholar
Johnson, K. K., Russ, P. D., Bair, J. H., and Friend, G. D., AJR 154, 405 (1990).CrossRefGoogle Scholar
Bahney, C. S., Hsu, C. W., Yoo, J. U., West, J. L., and Johnstone, B., The FASEB Journal 25, 1488 (2011).CrossRefGoogle Scholar
Chan, B. P. and Leon, K. W., European Spine Journal 17, 467 (2008).CrossRefGoogle Scholar
Caracciolo, P. C., de Queiroz, A. A. A., Higa, O. Z., Buffa, F., Abraham, G. A., Acta Biomaterialia 4, 976 (2008).CrossRefGoogle Scholar
Ohgoe, Y., Matsuo, H., Nonaka, K., Yaguchi, T., Kanasugi, K., Hirakuri, K. K., Funakubo, A., and Fukui, Y., Mater. Res. Soc. Symp. Proc. 1138, 1138-FF12-03 (2011).Google Scholar
Lackner, J. M., Waldhauser, W., BHM 155, 528 (2010).Google Scholar
Cheng, H. C., Chiou, S. Y., Liu, C. M., Lin, M. H., Chen, C. C., Ou, K. L., J. Alloys Compd. 477, 931 (2009)CrossRefGoogle Scholar
Roy, R. K., Ahmed, Sk. F., Yi, J. W., Moon, M.-W., Lee, K.-R., Jun, Y., Vacuum 83, 1179 (2009).CrossRefGoogle Scholar
Ma, W. J., Ruys, A. J., Mason, R. S., Martin, P. J., Bendavid, A., Liu, Z., Ionescu, M., Zreiqat, H., Biomaterials 28, 1620 (2007).CrossRefGoogle Scholar
Roy, R. K., Lee, K. R., J. Biomed. Mater. Res. Part B 83B, 72 (2007).CrossRefGoogle Scholar
Robertson, J., Diamond Relat. Mater. 12, 79 (2003).CrossRefGoogle Scholar
Hasebe, T., Hotta, A., Kodama, H, Kamijo, A., Takahashi, K., Suzuki, T., New Diamond and Frontier Carbon Technology 17 , 263 (2007). Google Scholar
Yang, P., Huang, N., Leng, Y. X., Yao, Z. Q., Zhou, H. F., Maitz, M., Leng, Y., Chu, P. K., NIM B 242, 22 (2006)CrossRefGoogle Scholar
Nitta, Y., Okamoto, K., Nakatani, T., Hoshi, H., Homma, A., Tatsumi, E., Taenaka, Y., Diamond Relat. Mater. 17, 1972 (2008).CrossRefGoogle Scholar
Majumdar, A., Schröder, K., and Hippler, R., J. Appl. Phys. 104, 074702 (2008).CrossRefGoogle Scholar
Kubová, O., Švorčík, V., Heitz, J., Moritz, S., Romanin, Ch., Matĕjka, P., Macková, A., Thin solid films 515, 6765 (2007).CrossRefGoogle Scholar
Arnold, M., Cavalcanti-Adam, E.A., Glass, R., Blummel, J., Eck, W., Kantlehner, M., Kessler, H. and Spatz, J.P., ChemPhysChem 5, 383 (2004).CrossRefGoogle Scholar
Biazar, E., Heidari, M., Asefnezhad, A., Montazeri, N., Int. J. Nanomedicine 6, 631639 (2011).CrossRefGoogle Scholar
Khan, S. P., Auner, G. G., Newaz, G. M., Nanomedicine:NBM 1, 135–129 (2005).Google Scholar