Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-14T18:36:19.046Z Has data issue: false hasContentIssue false

Investigation of Epitaxially Grown PbO, TiO2 and ZrO2 as Bridge Layers for Integration of PZT on GaN by MBE

Published online by Cambridge University Press:  26 February 2011

Xing Gu
Affiliation:
gux@vcu.edu, Virginia Commonwealth University, Electrical Engineering, 601 W.Main Street, Dept.Electrical Engineering, Richmond, VA, 23284, United States
Natalia Izyumskaya
Affiliation:
nIzyumskaya@vcu.edu, Virginia Commonwealth University, Electrical Engineering, 601 W.Main Street, Dept.Electrical Engineering, Richmond, VA, 23284, United States
Vataliy Avrutin
Affiliation:
vavrutin@vcu.edu, Virginia Commonwealth University, Electrical Engineering, 601 W.Main Street, Dept.Electrical Engineering, Richmond, VA, 23284, United States
Hadis Morkoç
Affiliation:
hmorkoc@vcu.edu, Virginia Commonwealth University, Electrical Engineering, 601 W.Main Street, Dept. Electrical Engineering, Richmond, VA, 23284, United States
Get access

Abstract

Epitaxial growth of PbO, TiO2 and ZrO2 has been achieved on MOCVD grown GaN template using oxides MBE with a reactive H2O2 oxygen source. In situ RHEED was used to monitor the growth in-situ. AFM was used to characterize the surface morphology of the thin PbO and ZrO2, which show streaky, 2-D RHEED patterns. XRD pattern indicates that the growth orientation of these oxides are PbO [111]//GaN [0002], ZrO2[100]//GaN [0002] and TiO2[200]//GaN[0002].

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Paz de Araujo, C. A. and Taylor, G. W., Ferroelectrics 116, 215 (1991)Google Scholar
2 Ho, Jyh-Jier, Fang, Y. K., Wu, K. H., Hsieh, W. T., Chu, C. W., Huang, C. R., Ju, M. S., and Chang, C. P., IEEE Elect. Dev. Lett., 19 (6),189, (1998)Google Scholar
3 Newnham, R. E. and Ruschau, G. R., J. Am. Ceram. Soc. 74, 463 (1991)Google Scholar
4 Essahlaoui, A., Roemer, A., Boudrioua, A., Millon, E., Loulergue, J.C., Optical Mater. 24, 465 (2003)Google Scholar
5 Land, C. E., J. Am. Ceram. Soc. 72, 2059 (1989).Google Scholar
6 Kang, Y. S., Fan, Q., Xiao, B., Alivov, Y. I., Xie, J. Q., Onojima, N., Cho, S. J., Moon, Y. T., Lee, H., Johnstone, D., Morkoc, H., Park, Y. S., Appl. Phys. Lett. 88, 123508 (2006)Google Scholar
7 Hiboux, S. and Muralt, P., J. Euro. Ceramic Soc. 24 1593 (2004)Google Scholar
8 Gong, W., Li, J., Chu, X., Gui, Z. and Li, L., Acta Mater. 52 2787 (2004)Google Scholar
9 Zhu, C., Chentao, Y., Bo, L. and Bangchao, Y., Mater. Lett. 60 1559 (2006)Google Scholar