Published online by Cambridge University Press: 17 June 2011
A soluble polyaniline was synthesized through emulsion polymerization and characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), gel permeation chromatography (GPC), viscosity analysis, and coefficient of linear thermal expansion (CLTE) determination. The electrical conductivity is found to reach 1000 S/cm with specific post doping treatments. Multiple printing processes, such as inkjet printing, screen printing and aerosol jet printing etc, make it feasible to print a variety of sensor patterns. The electromechanical response of these sensors was used to measure strain/stress or damage of composite structures under various load conditions expected to be experienced by aircraft. These unique conductive polymer sensors provide a feasible, near real time monitoring system for composites without adding significant additional weight to the structure.