Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-13T13:26:10.477Z Has data issue: false hasContentIssue false

Investigation of Second Harmonic Heneration in Glutamic Acid-Metal Complexes

Published online by Cambridge University Press:  15 February 2011

Thomas M. Cooper
Affiliation:
Materials Directorate, Wright Laboratory, Wright-Patterson Air Force Base, OH 45433
Steven M. Cline
Affiliation:
Materials Directorate, Wright Laboratory, Wright-Patterson Air Force Base, OH 45433
David E. Zelmon
Affiliation:
Materials Directorate, Wright Laboratory, Wright-Patterson Air Force Base, OH 45433
Rama Vuppuladhadium
Affiliation:
Materials Directorate, Wright Laboratory, Wright-Patterson Air Force Base, OH 45433
Samhita Das Gupta
Affiliation:
Materials Directorate, Wright Laboratory, Wright-Patterson Air Force Base, OH 45433
Uma B. Ramabadran
Affiliation:
Materials Directorate, Wright Laboratory, Wright-Patterson Air Force Base, OH 45433
Get access

Abstract

To design new second order nonlinear crystals, we have haracterized a series of dipeptide complexes and copper glutamate. We tested 16 materials using powder second harmonic generation. The best of these materials was copper glutamate. Results of initial nonlinear optical characterization of the copper glutamate powder determined by the Kurtz powder test are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tokarski, Z., Natarajan, L., Epling, B., Cooper, T., Hussong, K., Grinstead, T. and Adams, W.W., Chem. Mater., 6, pp. 20632069(1994).Google Scholar
2. Cooper, T., Campbell, A. and Crane, R.L., Langmuir 11, pp. 27132718(1995).Google Scholar
3. Monaco, S., Davis, L., Velsko, S., Wang, F. and Eimerl, D., J. Cryst. Growth 85, pp. 252255(1987).Google Scholar
4. Tokutake, S., Imanishi, Y. and Sisido, M., Mol. Cryst. Liq. Cryst. 170, pp. 245257(1989).Google Scholar
5. Velsko, S. in Materials for Nonlinear Optics: Chemical Perspectives, ACS Symposium Series 455, edited by Marder, S., Sohn, J. and Stucky, G., American Chemical Society, Washington D.C., (1991), pp. 343359.Google Scholar
6. Newman, P. R., Warren, L. F., Cunningham, P., Chang, T. Y., Cooper, D. E., Burdge, G. L., Polak-Dingels, P., and Lowe-Ma, C. K., Mater. Res. Soc. Symp. Proc., 173, 557 (1990)Google Scholar
7. Marcy, H. O., Warren, L. F., Webb, M. S., Ebbers, C. A., Velsko, S. P., Kennedy, G. C., and Catella, G. C., Appl. Opt., 31, 5051 (1992)Google Scholar
8. Ramabadran, U. B., Vuppuladhadium, R., Small, D. L., Zelmon, D. E., and Kennedy, G. C., Appl. Opt., 35, 903 (1996)Google Scholar
9. Gramaccioli, C. and Marsh, R.., Acta Cryst. 21, pp. 594600(1966).Google Scholar
10. Gramaccioli, C., Acta Cryst. 21, pp. 600605(1966).Google Scholar
11. Ledger, R. and Stewart, F., Aust. J. Chem. 18, pp. 1477–94(1965).Google Scholar
12. van Heeswijk, W., Eenink, M. and Feden, J., Angew. Chem. 82, pp. 744747(1982).Google Scholar
13. Kurtz, S. K. and Perry, T. T., J. Appl. Phys., 39, 37983813 (1968).Google Scholar
14. Kurtz, S. K. and Dougherty, J. P., in Systematic Materials Analysis, Richardson, J. H. and Peterson, R. V., eds., v4 (Academic Press, New York 1978) pp. 269342.Google Scholar
15. McPherson, A., J. Cryst. Growth 110, pp. 110(1991).Google Scholar
16. McPherson, A., Eur. J. Biochem 189, pp. 123(1990).Google Scholar
17. Weber, P., Adv. Protein Chem. 41, pp. 136(1991).Google Scholar