Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T06:51:16.475Z Has data issue: false hasContentIssue false

Ion Beam Assisted Deposition

Published online by Cambridge University Press:  01 February 2011

James K. Hirvonen*
Affiliation:
AMSRD-ARL-WM-MA, US Army Research Laboratory, Aberdeen Proving Ground, MD 21005
Get access

Abstract

The beneficial roles energetic ions play in thin film vacuum processes have long been recognized by the vacuum coating community. Optical coaters were among the first to adopt the process in the form of concurrent, low energy, directed ion beam bombardment of physical vapor deposition [electron beam] coatings for producing dense, adherent, robust, and environmentally resistant optical coatings. The international research and development community has also been actively pursuing the study of ion beam assisted deposition (IBAD) for both studying the mechanisms of ion/solid interactions during thin film growth as well as for developing coating protocols for specific application areas, including: tribological coatings, anti-corrosion coatings, optical coatings, superconducting buffer layers and coatings for temperature sensitive substrates such as polymers. This paper will review selected areas of this active field and will attempt to identify emerging application areas.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Mattox, D.M., J. Vac. Sci. Technol. A7, 1105 (1989).Google Scholar
2) Martin, P.J., Netterfield, R.P. and Sainty, W., J. Appl. Phys. 55, 235 (1984).Google Scholar
3) Smidt, F.A., International Materials Reviews 35, 61 (1990).Google Scholar
4) Harper, J.M.E., Cuomo, J.J., Gambino, R.J., and Kaufman, H.E., in “Ion Bombardment Modification of Surfaces: Fundamentals and Applications”, eds. Auciello, O. and Kelly, R., (Elsevier Sci. Publ. Amsterdam, 1984) Chap. 4.Google Scholar
5) Hirvonen, J.K., Material Science Reports, Vol. 6 (6), 215274 (1991).Google Scholar
6) Pranevicius, L., Thin Solid Films 63, 77 (1979).Google Scholar
7) Baglin, J., in “Handbook of Ion Beam Processing Technology”, eds. Cuomo, J.J., Rossnagel, S.M., and Kaufman, H.R. (Noyes Publications, Park Ridge, NJ, 1989) Chapter 14.Google Scholar
8) Guzman, L., Man, B.Y., Miotello, A., Adam, M., and Ossi, P.M., Thin Solid Films 420/421, 565570 (2002).Google Scholar
9) Müller, K.-H., J. Appl. Phys. 62, 1796 (1987).Google Scholar
10) Dobrev, D., Thin Solid Films 92, 41 (1982).Google Scholar
11) Demaree, J.D., Fountzoulas, C.G., Hirvonen, J.K., Monserrat, M.E., Halada, G.P., and Clayton, C.R., Mat. Res. Soc. Proc. 504, 271276 (1999).Google Scholar
12) Matsutami, T., Asanuma, T., Liu, C., Kiuchi, M., and Takeuchi, T., Nucl. Instr. and Meth. in Phys. Res. B 206, 343347 (2003).Google Scholar
13) Ide-Ektessabi, A., Uehara, H., Kamitani, S., Thin Solid Films, (in press).Google Scholar
14) Asmus, T. and Wolf, G. K., Nucl. Instr. and Meth. in Phys. Res. B 166–167, 732736 (2000).Google Scholar
15) Zaporojtchenko, V., Zekonyte, J., Biswas, A., and Faupel, F., Surface Science 532–535, 300305 (2003).Google Scholar
16) Lau, W.M., Nucl. Instr. and Meth. in Phys. Res. B 131, 341349 (1997).Google Scholar
17) Liu, C., Matsutani, T., Asanuma, T., and Kiuchi, M., Nucl. Instr. and Meth. in Phys. Res. B 206, 348352 (2003).Google Scholar
18) Liu, C., Mihara, T., Matsutani, T., Asanuma, T., and Kiuchi, M., Solid State Communications 126, 509513 (2003).Google Scholar
19) Ide-Ektessabi, A., Nomura, H., Yasui, N., and Tsukuda, Y., Thin Solid Films (in press).Google Scholar
20) Fountzoulas, C.G., Demaree, J.D., Hirvonen, J.K., and Kleinmeyer, J., Surface and Coatings Technology 103–104, 104108 (1998).Google Scholar
21) Yamada, I., Matsuo, J., Toyoda, N., and Kirkpatrick, A., Mat. Sci. Eng. R 34, 231 (2001).Google Scholar
22) Toyoda, N., Fujiwara, Y., Yamada, I., Nucl. Instr. and Meth. in Phys. Res. B 206, 875879 (2003).Google Scholar
23) Kitagawa, T., Yamada, I., Toyoda, N., Tsubakino, H., Matsuo, J., Takaoka, G.H., and Kirkpatrick, A., Nucl Instr. and Meth. in Phys. Res. B 201, 405412 (2003).Google Scholar
24) Nakatsu, O., Matsuo, J., Omoto, K., Seki, T., Takaoka, G., and Yamada, I., Nucl. Instr. And Meth. in Phys. Res. B 206, 866869 (2003).Google Scholar
25) Fujiwara, Y., Toyoda, N., Mochiji, K., Mitamura, T., and Yamada, I., Nucl. Instr. and Meth. in Phys. Res. B 206, 870874 (2003).Google Scholar
26) Selvamanickam, V., Lee, H.G., Li, Y., Xiong, X., Qiao, Y., Reeves, J., Xie, Y., Knoll, A., and Lenseth, K., Physica C 392–396, 859862 (2003).Google Scholar
27) Yamada, Y., Muroga, T., Iwai, H., Izumi, T., and Shiohara, Y., Physica C 392–396, 777782 (2003).Google Scholar
28) Kakimoto, K., Iijima, Y., and Saitoh, T., Physica C 392–396, 783789 (2003).Google Scholar
29) Rauschenbach, B., Vacuum 69, 310 (2003).Google Scholar
30) Miyano, T. and Kitamura, H., Surface and Coatings Technology 65, 179183 (1994).Google Scholar