Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T10:06:51.247Z Has data issue: false hasContentIssue false

Ion Bombardment in Silane VHF Deposition Plasmas

Published online by Cambridge University Press:  15 February 2011

E. A. G. Hamers
Affiliation:
Debye Institute, Utrecht University, P.O. Box 80.000, NL-3508 TA Utrecht, the Netherlands, hamers@fys.ruu.nl
J. Bezemer
Affiliation:
Debye Institute, Utrecht University, P.O. Box 80.000, NL-3508 TA Utrecht, the Netherlands, hamers@fys.ruu.nl
H. Meiling
Affiliation:
Debye Institute, Utrecht University, P.O. Box 80.000, NL-3508 TA Utrecht, the Netherlands, hamers@fys.ruu.nl
W.G.J.H.M. Van Sark
Affiliation:
Debye Institute, Utrecht University, P.O. Box 80.000, NL-3508 TA Utrecht, the Netherlands, hamers@fys.ruu.nl
W. F. Van Der Weg
Affiliation:
Debye Institute, Utrecht University, P.O. Box 80.000, NL-3508 TA Utrecht, the Netherlands, hamers@fys.ruu.nl
Get access

Abstract

The measurement of mass resolved ion energy distributions at the grounded substrate in an RF glow discharge allows to determine the ion flux and the ion energy flux towards the surface of a growing hydrogenated amorphous silicon (a-Si:H) layer. This provides the means to study the influence of ions on the structural properties of a-Si:H. Here we focus on the α-γ’ transition as occurs in silane-hydrogen plasmas at an RF frequency of 50 MHz and a substrate temperature of 250 °C. The structural properties of the layers appear to depend on the kinetic energy of the arriving ions. This is supported by measurements of ion fluxes under other deposition conditions and by characterization of the corresponding layers. The influence of ions on the growth is discussed in terms of their flux, and the amount of delivered kinetic and potential energy to the growing film. The measurements suggest that a threshold energy of about 5 eV per deposited atom is needed for the construction of a dense amorphous silicon network.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Roca i Cabarrocas, P. in Amorphous Silicon Technology, edited by Madan, A., Thompson, M.J., Taylor, P.C., Hamakawa, Y., and LeComber, P.G., (Mater. Res. Soc. Proc. 149, Pittsburgh, PA, 1989) pp. 3338.Google Scholar
2. Heintze, M. and Zedlitz, R., J. Non-Cryst. Solids 164–166, 55 (1993).Google Scholar
3. Ganguly, G., Ikeda, T., Sakata, I., and Matsuda, A. in Amorphous Silicon Technology, edited by Hack, M., Schiff, E.A., Wagner, S., Schropp, R., and Matsuda, A., (Mater. Res. Soc. Proc. 420, Pittsburgh, PA, 1996) pp. 347352.Google Scholar
4. Hoedemaker, M., van der Kuur, J., Melker, E.J.E., and Thijsse, B.J., Nucl. Instr. Meth. B (in press).Google Scholar
5. Perrin, J., Roca i Cabarrocas, P., Allain, B., and Friedt, J.-M., Jpn. J. Appl. Phys. 27, 2041 (1988).Google Scholar
6. Hamers, E.A.G., van Sark, W.G.J.H.M., Bezemer, J., van der Weg, W.F., and Goedheer, W.J. in Amorphous Silicon Technology, edited by Hack, M., Schiff, E.A., Wagner, S., Schropp, R., and Matsuda, A., (Mater. Res. Soc. Proc. 420, Pittsburgh, PA, 1996) pp 461466.Google Scholar
7. Fivaz, M., Brunner, S., Swarzenbach, W., Howling, A.A., and Hollenstein, C., Plasma Sources Sci. Technol. 4, 373 (1995).Google Scholar
8. Shanks, H., Fang, C.J., Ley, L., Cardona, M., Demond, F.J., and Kalbitzer, S., Phys. Status Solidi B 100, 43 (1980).Google Scholar
9. Perrin, J., Leroy, O., and Bordage, M.C., Contrib. Plasma Phys. 36, 3 (1996).Google Scholar