Published online by Cambridge University Press: 21 March 2011
Radiation durability of garnet [A3B2(XO4)3; Ia3d; Z=8] has been examined by 1.0 MeV Kr2+ irradiation with in situ transmission electron microscopy over the temperature range of 50 to 1070 K. The targets were five synthetic garnets incorporating various contents of actinides and andradite, Ca3Fe2Si3O12. The synthetic garnets were silicates (N series) and ferrate-aluminate series (G series).
The critical amorphization temperatures (Tc), above which amorphization does not occur, were determined to be 1050 K for N77, 1130 K for N56, 1100 K for G3, 890 K for G4 and 1030 K for andradite. Tc of the synthetic garnets increased as the average atomic mass of the garnet increased. The maximum transferred energy by ballistic interaction was positively correlated to the atomic mass. The larger cascade size that formed due to the larger Emax might lead to the higher Tc.