Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T06:44:15.520Z Has data issue: false hasContentIssue false

Ion-Beam Synthesized Semiconducting β-FeSi2 Controlled By Annealing Procedures And Phase-Transitions

Published online by Cambridge University Press:  10 February 2011

Y. Maeda
Affiliation:
Department of Materials Sciences, Osaka Prefecture University, Sakai, Osaka 599 Japan, ymaeda@ms.cias.osakafu-u.ac.jp
T. Fujita
Affiliation:
Department of Materials Sciences, Osaka Prefecture University, Sakai, Osaka 599 Japan, ymaeda@ms.cias.osakafu-u.ac.jp
T. Akita
Affiliation:
Department of Materials Sciences, Osaka Prefecture University, Sakai, Osaka 599 Japan, ymaeda@ms.cias.osakafu-u.ac.jp
K. Umezawa
Affiliation:
Department of Materials Sciences, Osaka Prefecture University, Sakai, Osaka 599 Japan, ymaeda@ms.cias.osakafu-u.ac.jp
K. Miyake
Affiliation:
Power & Industrial Systems R&D Division, Hitachi, Ltd. Hitachi, Ibaraki, 316 Japankmiyake@erl.hitachi.co.jp
Get access

Abstract

The ion beam synthesis (IBS) of β-FeSi2 was examined by Rutherford backscattering spectroscopy (RBS) and x-ray diffractometry (XRD), and the structural characterization was carried out by Raman spectroscopy and scanning electron microscopy (SEM). We found that the IBS of β- FeSi2 is controlled by two different processes depending on the annealing temperature (Ta) and Fe surface concentration (Cs); (I) precipitation of β-FeSi2 on the surface in Cs˜30 at% and Ta⩾700° C and (II) phase transition from γ -FeSi2 to β-FeSi2 in Cs<∼20 at%and Ta⩾600°C. The precipitation process(1) created large sized (-10 μm) polycrystalline grains of β-FeSi2. The good crystalline β-FeSi2 obtained above 800°C showed a clear reflectance maximum at 0.88 eV due to the optical transition at the direct band-gap of 0.84 eV observed in the characteristic plot ((ahv)2 vs. hv) of the optical absorption.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bost, M.C. and Mahan, I.E., J. Appl. Phys. 64, 2034 (1988).Google Scholar
2. Hunt, T.D., Reeson, K.J., Homewood, K.P., Wilson, R.J., Gwilliam, R.M. and Sealy, B.J., J. of Luminescence 57, 25 (1993).Google Scholar
3. Mandl, S., Nucl. Instrum. and Meth. B80/81, 895 (1993).Google Scholar
4. Hunt, T.D., Reeson, K.J., Homewood, K.P., Teon, S.W., Gwilliam, R.M. and Sealy, B.J., Nucl. Instrum. and Meth. B84 168 (1994).Google Scholar
5. Leong, D.N., Harry, M.A., Reeson, K.J., and Homewood, K. P, Appl. Phys. Lett. 68, 1649 (1996).Google Scholar
6. Yang, Z., Shao, G. and Homewood, K.P., Appl. Phys. Lett. 68, 1784 (1996).Google Scholar
7. Yang, Z. and Homewood, K.P, J. Appl. Phys. 79, 4312 (1996).Google Scholar
8. Katsumata, H., Makita, Y., Kobayashi, N., Shibata, H., Hasegawa, M., Aksenov, I., Kimura, S., Obara, A. and Uekusa, S., J. Appl. Phys. 80, 5955 (1996).Google Scholar
9. Homewood, K.P., Leong, D., Harry, M. and Reeson, K., Nature 387, 686 (1997).Google Scholar
10. Powalla, M. and Herz, K., Appl. Surf. Sci. 65/66,482 (1993).Google Scholar
11. Lefii, K. and Muret, P., J. Appl. Phys. 74, 1138 (1993).Google Scholar
12. Dusausoy, Y., Protas, J., Wandji, R. and Roques, B., Acda Cristallogr. B27, 1029 (1971).Google Scholar
13. Onda, N., Henz, J., Mueller, E, Mader, K.A., and von Kaenel, H., Appl. Surf. Sci. 56–58, 438 (1992).Google Scholar
14. Maeda, Y., Fujita, T., , Umezawa and Miyake, K., Microscopy of Semiconducting Materials 1997 (in press).Google Scholar
15. Lefki, K., Muret, P., Bustarret, E, Boutarek, N., Madar, R., Chevrier, J., Derrien, J. and Brunel, M., Soild State Commications, 80, 179 (1991).Google Scholar
16. Tanaka, M., Kumagai, Y., Suemasu, T., and Hasegawa, F., Appl. Surf. Sci. 117/118, 303 (1997).Google Scholar
17. Lange, H., Henrion, W., Selle, B., Reinsperger, G.U., Oertel, G. and von Kaenel, H., Applied Surf. Sci. 102, 169 (1996).Google Scholar
18. Tassis, D.H., Mitsas, C.L., Zorba, T.T., Angelakeris, M., Dimitriadis, C.A., Valassiades, O., Siapkas, D.I. and Kiriakidis, G., Applied Surf. Sci. 102, 178 (1996).Google Scholar
19. Urbach, F., Phys. Rev. 92, 1324 (1953).Google Scholar