Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T06:57:10.616Z Has data issue: false hasContentIssue false

Kinetics and Species of Flash Pyrolysis of Cellulose Acetate Butyrate: The Binder of Lova

Published online by Cambridge University Press:  10 February 2011

P. E. Gongwer
Affiliation:
Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716
H. Arisawa
Affiliation:
Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716
T. B. Brill
Affiliation:
Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716
Get access

Abstract

The principal binder of many LOVA propellants is cellulose acetate butyrate (CAB). By the use of T-Jump/FTIR spectroscopy, CAB was flash-pyrolyzed to set temperatures in the 465–600°C range, while rapid-scan IR spectra were used to identify the main decomposition products and to measure the rate of formation of each product as a function of temperature. Eleven specific products, which include oligomers of CAB, acids, aldehydes, ketenes, esters, CO2 and CO, were quantified by chemometric procedures. The ketenes are the most novel products. The Arrhenius parameters reveal that below 510 ± 20°C, the rate of product evolution is controlled mainly by condensed phase reactions. Above 510 ± 20°C, the rate of product evolution is controlled by desorption/evaporation of the volatile products.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pesce-Rodriguez, R. A., Miser, C. S., McNesby, K. L., Fifer, R. A., Kessel, S., and Strauss, B. D., Appl. Spectrosc., 46, p. 1143 (1992).Google Scholar
2. Lipska, A. E. and Parker, W. J., J. Appi. Polymer Sci., 10, p. 1439 (1966).Google Scholar
3. Lipska, A. E. and Wodley, F. A., J. Appl. Polymer Sci., 13, p. 851 (1969).Google Scholar
4. Shafizadeh, F. and Bradbury, A. G., J. Appl. Polymer Sci., 23, p.1431 (1979).Google Scholar
5. Bradbury, A. G., Sakai, Y., and Shafizadeh, F., J. Appl. Polymer Sci., 23, p. 3271 (1979).Google Scholar
6. Broido, A. and Weinstein, M., Comb. Sci. and Tech., 1, p. 279 (1970).Google Scholar
7. Lewellen, P. C., Peters, W. A., and Howard, J. B., 16th Symposium (Int.) on Combustion, p. 1471, The Combustion Institute, Pittsburgh, 1977.Google Scholar
8. Rogers, F. E. and Ohlemiller, T. J., Comb. Sci. and Tech., 24, p. 129 (1980).Google Scholar
9. Varhegyi, G., Antal, M. J. Jr, Szekely, T., and Szabo, P., Energy and Fuels, 3, p. 329 (1989).Google Scholar
10. Milosavljevic, I. and Suuberg, E. M., Preprints of Papers - American Chemical Society, Division of Fuel Chemistry, 39(3), p. 860 (1994).Google Scholar
11. Ozturk, Z. and Merklin, J. F., Biomass and Bioenergy, 5(6), p.437 (1993).Google Scholar
12. Scotney, A., Europ. Polym. J., 8, p. 163 (1972)Google Scholar
13. Brown, W. P. and Tipper, C. F. H., J. Appl. Polym. Sci., 22, p. 1459 (1978).Google Scholar
14. Scotney, A., Europ. Polym. J., 8, p. 175 (1972).Google Scholar
15. Scotney, A., Europ. Polym. J., 8, p. 185 (1972).Google Scholar
16. Brill, T. B., Brush, P. J., James, K. J., Shepherd, J. E. and Pfeiffer, K. J., Appl. Spectrosc., 46, p.900 (1992).Google Scholar
17. Shepherd, J. E. and Brill, T. B., 10th International Symposium on Detonation, Office of Naval Research, Arlington VA, p. 849 (1993).Google Scholar
18. Arisawa, H. and Brill, T. B., Combust. Flame, in press.Google Scholar
19. Nakanaga, T., Kondo, S. and Saeki, S., J. Chem. Phys., 76(8), 15 Apr. 1982, p. 3860.Google Scholar
20. Fisher, G. J., MacLean, A. F. and Schnizer, A. W., J. Org. Chem., 18, p. 1055 (1953).Google Scholar
21. Arisawa, H. and Brill, T. B., Decomposition Combustion and Detonation Chemistry of Energetic Materials, Materials Research Society, Pittsburgh, PA, 1995, preceding paper.Google Scholar