Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T06:49:15.026Z Has data issue: false hasContentIssue false

Laser Photochemical Vapor Deposition of Ge Films (300 ≤ T ≤ 873 K) from GeH4: Roles of Ge2H6 and Ge

Published online by Cambridge University Press:  28 February 2011

K. K. King
Affiliation:
University of Illinois, Urbana, IL 61801
V. Tavitian
Affiliation:
University of Illinois, Urbana, IL 61801
D. B. Geohegan
Affiliation:
University of Illinois, Urbana, IL 61801
E. A. P. Cheng
Affiliation:
University of Illinois, Urbana, IL 61801
S. A. Piette
Affiliation:
University of Illinois, Urbana, IL 61801
F. J. Scheltens
Affiliation:
University of Illinois, Urbana, IL 61801
J. G. Eden
Affiliation:
University of Illinois, Urbana, IL 61801
Get access

Abstract

The photochemical growth of polycrystalline and amorphous Ge films on SiO2, GaAs and NaCl by photodissociating GeH4 with excimer laser radiation in parallel geometry is reported. For substrate temperatures (TS) below the pyrolytic threshold for GeH4 (553 K), two distinct regions of film growth are observed. In the 425< TS < 553 K range, the ultraviolet (UV) laser “seeds” the reactor with Ge2H6 which readily pyrolyzes at the surface, forming several monolayers of Ge which subsequently catalyze the pyrolysis of GeH4. The activation energy (Ea) in this region is the same as that for the normal CVD growth of Ge from GeH4 (Ea = 0.9 eV). If, however, the laser is pulsed throughout the film growth run, Ea falls by a factor of at least 2 and growth is observed for TS as low as 300 K. In this laser sustained region, film growth ceases in the absence of UV laser radiation. These results clearly demonstrate the ability of a UV laser to alter the reactor chemistry and dictate the species responsible for film growth.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Andreatta, R. W., Abele, C. C., Osmundsen, J. F., Eden, J. G., Lubben, D. and Greene, J. E., Appl. Phys Lett. 40, 183 (1982).Google Scholar
2. Eden, J. G., Greene, J. E., Osmundsen, J. F., Lubben, D., Abele, C. C., Gorbatkin, S. and Desai, H. D., Laser Diagnostics and Photochemical Processing for Semiconductor Devices, Mat. Res. Soc. Symp. Proc., Vol.17, Osgood, R. M., Brueck, S. R. J. and Schlossberg, H. R., eds. (North-Holland, New York, 1983), pp. 185192.Google Scholar
3. Osmundsen, J. F., Abele, C. C. and Eden, J. G., J. Appl. Phys. 57, 2921 (1985).CrossRefGoogle Scholar
4. Taguchi, T., Morikawa, M., Hiratsuka, Y. and Toyoda, K., Appl. Phys. Lett. 49, 971 (1986).Google Scholar
5. Hall, L. N., J. Electrochem. Soc. 119, 1593 (1972) and references cited therein.CrossRefGoogle Scholar
6. Smith, G. R. and Guillory, W. A., J. Chem. Phys. 56, 1423 (1972).Google Scholar
7. For a discussion of similar processes in SiH4, see Nakamura, K., Masaki, N., Sato, S. and Shimokoshi, K., J. Chem. Phys. 83, 4504 (1985).CrossRefGoogle Scholar
8. Austin, E. R. and Lampe, F. W., J. Phys. Chem. 81, 1134 (1977).Google Scholar
9. Masel, R. (private communication) and unpublished experimental results.Google Scholar
10. Tsao, J. Y. and Ehrlich, D. J., Appl. Phys. Lett. 45, 617 (1984).CrossRefGoogle Scholar
11. Higashi, G. S. and Fleming, C. G., Appl. Phys. Lett. 48, 1051 (1986).Google Scholar