No CrossRef data available.
Published online by Cambridge University Press: 28 February 2011
We report results of photoluminescence (PL), FTIR and ESR investigations on nanoporous silicon (PS) where a reversible PL intensity relaxation effect in the chemically oxidised material is observed. To be activated the effect needs, however, additional preparation steps including light irradiation and ageing in ambient atmosphere. After illumination with visible light, the PL intensity is remarkably diminished. However it recovers in the dark within the time scale of minutes to hours under ambient atmosphere at room temperature. This cycle can be repeated several times. We show that the variation of the PL intensity is anticorrelated to an ESR signal attributed to silicon dangling bonds. From the IR spectrum, however, no significant change of the pore surface chemical structure can be observed during a cycle. Therefore we conclude that the variation of the PL intensity is rather controlled by a metastable change in the number of dangling bond centers than by modification of the surface chemistry in the porous silicon system.