Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-02T21:27:19.040Z Has data issue: false hasContentIssue false

Light Trapping effects in Thin Film Silicon Solar Cells

Published online by Cambridge University Press:  31 January 2011

Franz-Josef Haug
Affiliation:
franz-josef.haug@epfl.ch, Ecole Polytechnique de Lausanne, Institute of Microengineering, Neuchatel, Switzerland
Thomas Söderström
Affiliation:
thomas.soderstrom@epfl.ch, Ecole Polytechnique de Lausanne, Institute of Microengineering, Neuchatel, Switzerland
Didier Dominé
Affiliation:
didier.domine@supsi.ch, SUPSI, Lugano, Switzerland
Christophe Ballif
Affiliation:
christophe.ballif@epfl.ch, Ecole Polytechnique de Lausanne, Institute of Microengineering, Neuchatel, Switzerland
Get access

Abstract

We present advanced light trapping concepts for thin film silicon solar cells. When an amorphous and a microcrystalline absorber layers are combined into a micromorph tandem cell, light trapping becomes a challenge because it should combine the spectral region from 600 to 750 nm for the amorphous top cell and from 800 to 1100 for the microcrystalline bottom cell. Because light trapping is typically achieved by growing on textured substrates, the effect of interface textures on the material and electric properties has to be taken into account, and importantly, how the surface textures evolve with the thickness of the overgrowing layers. We present different scenarios for the n-i-p configuration on flexible polymer substrates and p-i-n cells on glass substrate, and we present our latest stabilized efficiencies of 9.8% and 11.1%, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Deckman, H. W. Wronski, C. R. Witzke, H. and Yablonovitch, E. Optically Enhanced Amorphous-Silicon Solar-Cells. Applied Physics Letters, 1983. 42(11): p. 968970.Google Scholar
2 Kambe, M. Fukawa, M. Taneda, N. Yoshikawa, Y. Sato, K. Ohki, K. Hiza, S. Yamada, A. and Konagai, M.. Improvement of light-trapping effect on microcrystalline silicon solar cells by using high haze transparent conductive oxide films. in Proc. 3rd World PVSEC. 2003. Osaka. p. 18121815 Google Scholar
3 Fay, S. Steinhauser, J. Oliveira, N. Vallat-Sauvain, E., and Ballif, C. Optoelectronic properties of rough LP-CVD ZnO:B for use as TCO in thin-film silicon solar cells. Thin Solid Films, 2007. 515(24): p. 85588561.Google Scholar
4 Kluth, O. Rech, B. Houben, L. Wieder, S. Schöpe, G., Beneking, C. Wagner, H. Löffl, A., and Schock, H. W. Texture etched ZnO: Al coated glass substrates for silicon based thin film solar cells. Thin Solid Films, 1999. 351(1-2): p. 247253.Google Scholar
5 Banerjee, A. and Guha, S. Study of Back Reflectors for Amorphous-Silicon Alloy Solar-Cell Application. Journal of Applied Physics, 1991. 69(2): p. 10301035.Google Scholar
6 Franken, R. Stolk, R. Li, H. Werf, C. van der, Rath, J. and Schropp, R. Understanding light trapping by light scattering textured back electrodes in thin film n-i-p-type silicon solar cells. Journal of Applied Physics, 2007. 102: p. 014503.Google Scholar
7 Python, M. Vallat-Sauvain, E., Bailat, J. Dominé, D., Fesquet, L. Shah, A. and Ballif, C. Relation between substrate surface morphology and microcrystalline silicon solar cell performance. Journal of Non-Crystalline Solids, 2008. 354(19-25): p. 22582262.Google Scholar
8 Li, H. Franken, R. Rath, J. and Schropp, R. Structural defects caused by a rough substrate and their influence on the performance of hydrogenated nanocrystalline silicon n–i–p solar cells. Solar Energy Materials and Solar Cells, 2009.Google Scholar
9 Fischer, D. Dubail, S. Anna, J. D. Selvan, N. Pellaton Vaucher, Platz, R. Hof, C. Kroll, U. Meier, J. Torres, P. Keppner, H. Wyrsch, N. Goetz, M. Shah, A. and Ufert, K.D.. The micromorph solar cell: extending a a-Si:H technology twoards thin film crystallline silicon. in Proc. 25th IEEE PVSC. 1996. Washington D. C. p. 10531056 Google Scholar
10 Buehlmann, P. Bailat, J. Domine, D. Billet, A. Meillaud, F. Feltrin, A. and Ballif, C. In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells. Applied Physics Letters, 2007. 91(14): p. 143505.Google Scholar
11 Yamamoto, K. Nakajima, A. Yoshimi, M. Sawada, T. Fukuda, S. Suezaki, T. Ichikawa, M. Koi, Y. Goto, M. and Meguro, T. A high efficiency thin film silicon solar cell and module. Solar Energy, 2004. 77(6): p. 939949.Google Scholar
12 Haug, F.J. Söderström, T., Python, M. Terrazzoni-Daudrix, V., Niquille, X. and Ballif, C. Development of micromorph tandem solar cells on flexible low cost plastic substrates. To be published in Sol. En. Mat., 2009.Google Scholar
13 Bailat, J. Dominé, D., Schlüchter, R., Steinhauser, J. Faÿ, S. Freitas, F. Bücher, C., Feitknecht, L. Niquille, X. Tscharner, R. Shah, A. and Ballif, C.. High efficiency pin microcrystalline and micromorph thin film silicon solar cells deposited on LPCVD ZnO coated glass substrates. in Proc. 4th World PVSEC. 2006. Hawaii. p. 15331536 Google Scholar
14 Söderström, T., Haug, F. J. Niquille, X. Terrazoni-Daudrix, V., and Ballif, C. Asymmetrid intermediate reflector for tandem micromorph thin film silicon solar cells. Applied Physics Letters, 2009. 94: p. 063501.Google Scholar
15 Dominé, D., Buehlmann, P. Bailat, J. Billet, A. Feltrin, A. and Ballif, C.. Highefficiency micromorph silicon solar cells with in-situ intermediate reflector depositd on various rough LPCVD-ZnO. in Proc. 23rd European PVSEC 2008. Valencia. p. 20912095 Google Scholar
16 Söderström, T., Haug, F. J. Terrazzoni-Daudrix, V., and Ballif, C. Optimization of amorphous silicon thin film solar cells for flexible photovoltaics. Journal of Applied Physics, 2008. 103(11): p. 114509–114509.Google Scholar
17 Söderström, T., Single and multi-junction thin film silicon solar cells for flexible photovoltaics, PhD Thesis, University of Neuchatel, 2009 Google Scholar
18 Meier, J. Spitznagel, J. Kroll, U. Bucher, C. Faÿ, S. Moriarty, T. and Shah, A. Potential of amorphous and microcrystalline silicon solar cells. Thin Solid Films, 2004. 451: p. 518524.Google Scholar
19 Carniglia, C. K. Scalar scattering theory for multilayer optical coatings. Optical Engineering, 1979. 18(2): p. 104115.Google Scholar
20 Zeman, M. Swaaij, R. Van, Metselaar, J. W. and Schropp, R. E. I. Optical modeling of a-Si: H solar cells with rough interfaces: Effect of back contact and interface roughness. Journal of Applied Physics, 2000. 88: p. 6436.Google Scholar
21 Stiebig, H. Brammer, T. Repmann, T. Kluth, O. Senoussaoui, N. Lambertz, A. and Wagner, H.. Light Scattering in Microcrystalline Silicon Thin Film Solar Cells. in Proc. 16th EU-PVSEC. 2000. Glasgow. p. 549552 Google Scholar
22 Domine, D. Buehlmann, P. Bailat, J. Billet, A. Feltrin, A. and Ballif, C. Optical management in high-efficiency thin-film silicon micromorph solar cells with a silicon oxide based intermediate reflector. Physica Status Solidi (RRL)-Rapid Research Letters, 2008. 2(4).Google Scholar
23 Domine, D. The role of front electrodes and intermediate reflectors in the optoelectronic properties of high-efficiency micromorph solar cells, PhD Thesis, University of Neuchatel, 2009 Google Scholar
24 Oyama, T. Kambe, M. Taneda, N. and Masumo, K.. Requirements for TCO substrate in Si-based thin film solar cells – toward tandem. in MRS Spring Meeting. 2008. San Francisco. p. KK0201 Google Scholar
25 Harvey, J. E. and Krywonos, A.. A Global View of Diffraction: Revisited. in Proc. SPIE AM100-26. 2004. Denver. p.Google Scholar