Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-13T14:40:58.705Z Has data issue: false hasContentIssue false

Local Structure and Magnetic Properties of LixFePO4 Glasses

Published online by Cambridge University Press:  26 February 2011

Pawel Jozwiak
Affiliation:
cjul@ccr.jussieu.fr, University Paris 6, INSP, 140 rue de Lourmel, Paris, 75015, France
Jerzy Garbarczyk
Affiliation:
cjul@ccr.jssieu.fr, Warsaw University of Technology, Faculty of Physics, Koszykowa 75,, Warsaw, 00662, Poland
François Gendron
Affiliation:
gendron@ccr.jussieu.fr, University Paris 6, INSP, 140 rue de Lourmel, Paris, 75015, France
Alain Mauger
Affiliation:
mauger@ccr.jussieu.fr, CNRS, MPPU, 140 rue de Lourmel, Paris, 75015, France
Christian M Julien
Affiliation:
Christian.Julien@insp.jussieu.fr, University Paris 6, INSP, 140 rue de Lourmel, Paris, 75015, France
Get access

Abstract

A series of LixFePO4 samples (0≤x≤1) have been synthesized in the vitreous state by fast quenching technique. Characterization methods include XRD, TG, FTIR, magnetic susceptibility and electrical measurements. FTIR studies reveal that in the entire composition range the local structure is identical to the olivine lattice including PO4 3− oxo-anions linked to FeO6 octahedra. Magnetic susceptibility data show that the antiferromagnetic ordering does not exist so far and the paramagnetic behaviour follows the Curie-Weiss law above 30 K. Both the Curie parameter and the Weiss temperature suggest a strong weakness of the superexchange interactions that are consistent with the analysis of infrared spectra. Electrical conductivity shows an activated conduction mechanism with Ea =0.67 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Manthiram, A., Goodenough, J.B., J. Solid State Chem. 71, 349 (1987).Google Scholar
2. Padhi, A.K., Nanjundaswamy, K.S., Goodenough, J.B., J. Electrochem. Soc. 144, 1188 (1997).Google Scholar
3. Ravet, N., Abouimrane, A., Armand, M., Nat. Mater. 2, 702 (2003).Google Scholar
4. Huang, H., Yin, S.C., Nazar, L.F., Electrochem. Solid-State Lett. 4, A170 (2001).Google Scholar
5. Zaghib, K., Striebel, K., Guerfi, A., Shim, J., Armand, M., Gauthier, M., Electrochim. Acta 50, 263 (2004).Google Scholar
6. Streltsov, A, Belokoneva, E.L., Tsirelson, V.G., Hansen, N.K., Acta. Cryst. B 49, 147 (1993).Google Scholar
7. Ait-Salah, A., Jozwiak, P., Garbarczyk, J.E., Benkhouja, K., Zaghib, K., Gendron, F., Julien, C.M., J. Power Sources 140, 370 (2005).Google Scholar
8. Machida, N., Tanaka, H., Shigematsu, T., Nakanishi, N., Minami, T., Solid State Ionics 70–71, 328 (1994).Google Scholar
9. Wasiucionek, M., Garbarczyk, J., Kurek, P., Jakubowski, W., Solid State Ionics 70–71, 346 (1994).Google Scholar
10. Jozwiak, P., Garbarczyk, J.E., Gendron, F., Julien, C.M., Electrochem. Soc. Proc. 11, 79 (2005).Google Scholar
11. Ait-Salah, A., Jozwiak, P., Garbarczyk, J.E., Gendron, F., Massot, M., Julien, C.M., Electrochem. Soc. Proc. 11, 173 (2005).Google Scholar
12. Garbarczyk, J.E., Machowski, P., Wasiucionek, M., Tykarski, L., Bacewicz, R., andAleksiejuk, A., Solid State Ionics 136–137, 1077 (2000).Google Scholar
13. Santoro, R.P., Newnham, R.E., Nomura, S., J. Phys. Chem. Solids. 27, 655 (1966).Google Scholar
14. Santoro, R.P., Segal, D.J., Newnham, R.E., J. Phys. Chem. Solids. 27, 1192 (1966).Google Scholar
15. Santoro, R.P., Newnham, R.E., Acta Crystallogr. 22, 344 (1967).Google Scholar
16. Mays, J.M., Phys. Rev. 131, 38 (1963).Google Scholar
17. Ait-Salah, A., Mauger, A., Gendron, F., Julien, C.M., Mater. Sci. Eng. B 129, 232 (2006).Google Scholar