Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T07:03:11.981Z Has data issue: false hasContentIssue false

Low Energy Si Bombardment Effects on Epitaxial Si Growth

Published online by Cambridge University Press:  25 February 2011

Makoto Kitabatake
Affiliation:
Central Research Laboratories, Matsushita Electric Ind., Moriguchi, Osaka 570, Japan
J. E. Greene
Affiliation:
Department of Materials Science and The Coordinated Science Laboratory, University of Illinois, 1101 W.Springfield, Urbana, IL 61801, USA
Get access

Abstract

Molecular dynamics simulations were used to follow low-energy ion/surface interactions in Si MBE including kinetic energy redistribution in the lattice as a function of time, projectile and lattice atom trajectories, and the nature, number, and depth of residual defects. The simulations were carried out using the Tersoff many-body potential for Si. Irradiation events were initiated with 10 and 50 eV Si atoms incident normal to the Si(001)2xl surface at an array of points in the primitive surface unit cell. Epitaxy, exchange reactions, and defect (vacancy and interstitial) formations were observed. Quasidynamic simulations suggested that the interstitials preferentially diffuse toward the surface and are annealed out over times corresponding to monolayer deposition at typical Si MBE growth temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Narusawa, T., Shimizu, S., and Komiya, S., J.Vac.Sci.Technol. 16, 366 (1979).CrossRefGoogle Scholar
2. Zalm, P.C. and Beckers, L.J., Appl. Phys. Lett. 41, 167 (1982).Google Scholar
3. Ohmi, T., Ichikawa, T., Shibata, T., Matsudo, K., and Iwabuchi, H., Appl. Phys. Lett. 53, 45 (1988).Google Scholar
4. Hasan, M.-A., Knall, J., Barnett, S.A., Sundgren, J.-E., Markert, L.C., Rockett, A., and Greene, J.E., J.Appl.Phys. 65, 172 (1989).Google Scholar
5. Ni, W.-X., Knall, J., Hasan, M.-A., Hansson, G.V., Sundgren, J.-E., Barnett, S.A., and Greene, J.E., Phys. Rev. B40, 10449 (1989).CrossRefGoogle Scholar
6. Noel, J.-P., Hirashita, N., Markert, L.C., Kim, Y.-W., Greene, J.E., Knall, J., Ni, W.-X., Hasan, M.A., and Sundgren, J.-E., J.Appl.Phys. 65, 1189 (1989).CrossRefGoogle Scholar
7. Noel, J.-P., Greene, J.E., Rowell, N.L., Kechang, S., and Houghton, D.C., Appl. Phys. Lett. 55, 1525 (1989).Google Scholar
8. Greene, J.E., Barnett, S.A., Bajor, G., and Rockett, A., Appl.Surf.Sci. 22/23, 520 (1985).CrossRefGoogle Scholar
9. Nuller, K.-H., Appl.Phys. A40, 209 (1986).Google Scholar
10. Muller, K.-H., Phys.Rev. B35, 7906 (1987).Google Scholar
11. Kitabatake, M., Fons, P., and Greene, J.E., J.Vac.Sci.Technol. A8, 3726 (1990).Google Scholar
12. Kitabatake, M., Fons, P., and Greene, J.E., J. Crystal Growth (1991) in press.Google Scholar
13. Kitabatake, M., Fons, P., and Greene, J.E., J.Vac.Sci.Technol. A9, 91 (1991).Google Scholar
14. Tersoff, J., Phys. Rev. B38, 9902 (1988).Google Scholar
15. Schofield, P., Comp.Phys.Comm. 5, 17 (1973).CrossRefGoogle Scholar
16. Beeler, J.R., Radiation Effects Computer Experiments: Defect in Solids (North-Holland, Amsterdam, 1983), p. 30.Google Scholar
17. Car, R., Kelly, P.J., Oshiyama, A., and Pantelides, S.T., Phys.Rev.Lett. 52, 1814 (1984).Google Scholar
18. Car, R., Kelly, P.J., Oshiyama, A., and Pantelides, S.T., Phys.Rev.Lett. 54, 360 (1985).Google Scholar
19. Baraff, G.A. and Schluter, M., Phys. Rev. 30, 3460 (1984).Google Scholar
20. Bar-Yam, Y. and Joannopoulos, J.D., Phys. Rev. B30, 1844 (1984).CrossRefGoogle Scholar
21. Fahey, P.M., Griffin, P.B., and Plummer, D., Rev. Mod. Phys. 61, 289 (1989).CrossRefGoogle Scholar