No CrossRef data available.
Published online by Cambridge University Press: 25 February 2011
Molecular dynamics simulations were used to follow low-energy ion/surface interactions in Si MBE including kinetic energy redistribution in the lattice as a function of time, projectile and lattice atom trajectories, and the nature, number, and depth of residual defects. The simulations were carried out using the Tersoff many-body potential for Si. Irradiation events were initiated with 10 and 50 eV Si atoms incident normal to the Si(001)2xl surface at an array of points in the primitive surface unit cell. Epitaxy, exchange reactions, and defect (vacancy and interstitial) formations were observed. Quasidynamic simulations suggested that the interstitials preferentially diffuse toward the surface and are annealed out over times corresponding to monolayer deposition at typical Si MBE growth temperatures.