Published online by Cambridge University Press: 01 February 2011
Au/Cr and Au/Ti films were deposited on Si (100) substrates using DC planar magnetron sputtering to assess residual stress in high reflectivity coatings. The dependence of stress on argon sputter pressure, component materials, and film thickness is discussed. Stress evolution as a function of thickness for individual Cr, Ti and Au films is also investigated to identify high-stress components of these two-layer coatings. Near-zero stress Au/Ti films were achieved with a particular set of sputtering parameters. Using the same process conditions, films were deposited onto pre-released MEMS mirrors having a number of different shapes and sizes. Optical interferometry demonstrates minimal change in the bow of 500, 250, and 125 μm diameter mirrors, consistent with a λ/40 flatness (λ = 1319 nm).