Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-29T12:04:48.448Z Has data issue: false hasContentIssue false

Low Temperature High Quality Growth of Silicon-Dioxide Using Oxygenation of Hydrogenation-Assisted Nano-Structured Silicon Thin Films

Published online by Cambridge University Press:  01 February 2011

Nima Rouhi
Affiliation:
nimarouhi793@yahoo.com, University of Tehran, Electrical and Computer Eng., North Kargar Ave, Tehran Iran, Tehran, 14395, Iran
Behzad Esfandyarpour
Affiliation:
smohajer@tfl.ir, University of Tehran, Tehran, 14395, Iran
Shams Mohajerzadeh
Affiliation:
smohajer@tfl.ir, University of Tehran, Tehran, 14395, Iran
Pouya Hashemi
Affiliation:
smohajer@tfl.ir, University of Tehran, Tehran, 14395, Iran
Bahman Hekmat-Shoar
Affiliation:
hekmat@ Princeton.EDU, University of Tehran, Tehran, 14395, Iran
Michael D. Robertson
Affiliation:
michael.robertson@acadiau.ca, Acadia University, Wolfville, 14395, Canada
Get access

Abstract

We report a low temperature high quality oxide growth of nano-structured silicon thin films on silicon substrates obtained through a hydrogenation-assisted PECVD technique followed by a plasma enhanced oxidation process. The deposited layers were investigated and compared with respect to their electrical, optical and stoichiometrical properties by means of Ellipsometry, Rutherford backscattering (RBS), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and by current voltage and capacitance voltage measurements on metal-oxide-semiconductor (MOS) structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Jamei, M., Karbasian, F., Mohajerzadeh, S., Abdi, Y., Robertson, M. D., Yuill, S., IEEE EDL, V 28. Issue 3, Pages 207210.Google Scholar
2 Herd, S. R., Chaudhari, P., and Brodsky, M. H., J. Non-Cryst. Solids 7, 309 (1972).Google Scholar
3 Hayzelden, C. and Batstone, J. L., J. Appl. Phys. 73, 8279 (1993).Google Scholar
4 Sameshima, T. and Usui, S., J. Appl. Phys. 70, 1281 (1991).Google Scholar
5 Ivanda, M., Furić, K., Gamulin, O., Peršin, M., and Gracin, D., J. Appl. Phys. 70, 4637 (1991).Google Scholar
6 Han, S. M., Lee, M. C., Shin, M. Y., Park, J. H., and Han, M. K., Proc. IEEE 93, 1297 (2005).Google Scholar
7 Lee, S. W., Jeon, Y. C., and Joo, S. K., Appl. Phys. Lett. 66, 1671 (1995).Google Scholar
8 Ditizio, R. A., Liu, G., Fonash, S. J., Hseih, B. C., and Greve, D. W., Appl. Phys. Lett. 56, 1140 (1990).Google Scholar
9 MacDonald, Steven A., Schardt, Craig R., Masiello, David J., Simmons, Joseph H., “Dispersion analysis of FTIR reflection measurements in silicate glasses”, Journal of Non-Crystalline Solids 275, 7282 (2000).Google Scholar
10 Hashemi, P., Abdi, Y., Mohajerzadeh, S., Derakhshandeh, J., and Khajooeizadeh, A., Robertson, M. D., Thompson, R. D., and MacLachlan, J. M., JOURNAL OF APPLIED PHYSICS 100, 104320 (2006).Google Scholar